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Abstract—Traffic violations have become one of the major threats to urban transportation systems, undermining human safety and
causing economic losses. To alleviate this problem, crowd-based patrol forces including traffic police and voluntary participants have
been employed in many cities. To adaptively optimize patrol routes with limited manpower, it is essential to be aware of traffic violation
hotspots. Traditionally, traffic violation hotspots are directly inferred from experience, and existing patrol routes are usually fixed. In this
paper, we propose a mobile crowdsensing-based framework to dynamically infer traffic violation hotspots and adaptively schedule
crowd patrol routes. Specifically, we first extract traffic violation-prone locations from heterogeneous crowd-sensed data and propose a
spatiotemporal context-aware self-adaptive learning model (CSTA) to infer traffic violation hotspots. Then, we propose a tensor-based
integer linear problem modeling method (TILP) to adaptively find optimal patrol routes under human labor constraints. Experiments on
real-world data from two Chinese cities (Xiamen and Chengdu) show that our approach accurately infers traffic violation hotspots with
F1-scores above 90% in both cities, and generates patrol routes with relative coverage ratios above 85%, significantly outperforming
baseline methods.

Index Terms—Traffic violation, urban computing, patrol task scheduling, mobile crowdsensing.
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1 INTRODUCTION

T RAFFIC violations, such as speeding, illegal turning,
illegal parking, bring potential congestions, accidents

and parking problems and have increasingly become a
significant challenge in urban transportation systems [1].
For example, in 2018, New York City issued 54,469 traffic
violation tickets and reported 44,508 traffic-related injuries
across the city [2]. Approximately 1.35 million people die
every year across the world as a result of road traffic
accidents, costing most countries 3% of their gross domestic
product [3]. To mitigate this issue, traffic police are dis-
patched to patrol around the city and station at some road
intersections or segments with frequent traffic violations in
rush hours (as shown in Fig. 1). However, due to the limited
manpower, traffic police usually cannot cover the entire
road network [4]. Besides, due to the lack of knowledge
about traffic violation hotspots, the patrol routes are usually
fixed and suboptimal, leading to a waste of human labor
and deteriorates the effectiveness of patrol [5]. Therefore, it
is essential to have a comprehensive understanding of dy-
namic traffic violation hotspots, so as to adaptively schedule
the patrol routes of traffic police and incorporate voluntary
participants when available.

Fortunately, the widely deployed crowdsensing systems
generate heterogeneous data and provide us unprecedented
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Fig. 1. An illustration for patrol participants conducting patrol for traffic
violation hotspots.

opportunities for dynamic and efficient traffic violation
hotspots patrolling in smart cities [6]. More specifically, city-
wide traffic violation events can be extracted from these
crowd-sensed data, and traffic violation hotspots can be
inferred from traffic violation events. However, traditional
methods usually infer traffic violation hotspots through
statistics of historical violation events [7]–[9], failed to reflect
the highly dynamic traffic violation hotspots accurately.
Therefore, a dynamic and comprehensive method is in great
demand for traffic violation hotspot inference.

With the dynamic traffic violation hotspots distribution,
we need to design patrol routes adaptively. However, due
to the limited manpower, traffic police usually cannot cover
the entire road network, and their patrol routes are usually
fixed. In recent years, many researchers have proposed to
leverage the power of crowd to collaboratively perform
large-scale complex sensing jobs [10], such as public in-
formation reposting [11], urban WiFi characterization [12],
and road surface assessment [13]. Therefore, we propose to
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(a) Grid-based. (b) Road network-based.

Fig. 2. An illustration of the advantages in road network-based traffic
violation-prone location extraction. In (a), the road intersections A, B,
and C are divided into different grids. In (b), A, B, and C are extracted
as traffic violation-prone locations based on road network.

incorporate crowd volunteers for patrolling, and adaptively
schedule patrol tasks to traffic police.

In this paper, we propose a mobile crowdsensing frame-
work for traffic violation hotspot patrolling. We first extract
traffic violation-prone locations and infer dynamic traffic
violation hotspots from heterogeneous crowd-sensed data.
Then, we incorporate city-wide mobile crowd users to esti-
mate voluntary participants and adaptively schedule patrol
tasks for traffic police. To implement this mobile crowdsens-
ing framework, the following issues need to be addressed.

First, it is non-trivial to extract traffic violation-prone loca-
tions from heterogeneous crowd-sensed data. Since the heteroge-
neous crowd-sensed data, such as vehicle trajectories and
road environments, are noisy and complex, it is difficult
to extract traffic violation events. Moreover, traffic violation
events are dynamically distributed across the road network.
Traditional methods for traffic violation-prone location ex-
traction, such as griding the whole city and selecting grids
with more frequent traffic violations [14], are inefficient,
since many areas in cities are not roads. Besides, simply
griding the city may lead to the result that one road inter-
section or segment is divided into different grids (Fig. 2a),
and it is also difficult to determine the size of grids. To
address this issue, we propose to extract traffic violation-
prone locations with dynamic boundaries (Fig. 2b) from
crowd-sensed traffic violations based on the road network.

Second, it is hard to infer traffic violation hotspots compre-
hensively. Many researchers have been working on inferring
traffic violation hotspots through analyzing drivers’ behav-
iors [15], [16]. However, these methods focus on some key
locations or drivers’ personalities and are difficult to be
transfered to the whole road network. Some researchers
incorporate deep learning in traffic forecasting [17], [18],
which usually requires a large amount of data and com-
puting resources. Therefore, we propose to involve cross-
domain road environment data to model the spatiotemporal
contexts of traffic violation-prone locations, and combine tri-
training and active learning (CSTA) to leverage the crowd
intelligence for traffic violation hotspot inference.

Third, it is difficult to optimize patrol routes effectively. The
effectiveness of patrol requires patrol routes to have high
coverage ratios of traffic violation hotspots, which inevitably
increases the workload of patrol participants. The designed
patrol routes should keep a balance between effectiveness
and workload. Also, the sub-route length should be limited
to guarantee timely transfer between hotspots, and the pa-

trol routes should be vertex-disjoint so that different patrol
participants would not station at the same location in the
same time, avoiding wasting human resources. Therefore,
we propose a tensor-based integer linear problem modeling
method (TILP) incorporating the potential voluntary partic-
ipants to find optimal vertex-disjoint patrol routes with a
maximal coverage ratio of traffic violation hotspots under
resource constraints.

To summarize, based on the above discussion, the con-
tributions of this paper include:

• To the best of our knowledge, this is the first mo-
bile crowdsensing framework to dynamically infer
traffic violation hotspots and adaptively schedule pa-
trol tasks. Such a comprehensive framework can help
better understand spatiotemporal characteristics of
traffic violation hotspots and schedule patrol tasks
with higher effectiveness and fewer resources.

• We propose a three-phase framework to infer traf-
fic violation hotspots in cities and schedule patrol
tasks. Our method can not only accurately infer traffic
violation hotspots by a context-aware self-adaptive
learning model (CSTA) based on crowd-sensed traffic
violations and contexts, but also adaptively schedule
patrol tasks leveraging a tensor-based integer linear
problem modeling method (TILP) incorporating mo-
bile users.

• We evaluate our framework with real-world hetero-
geneous datasets from Xiamen and Chengdu. Re-
sults show that our framework can accurately infer
traffic violation hotspots based on spatiotemporal
contextual features with F1-score above 90% in both
Chengdu and Xiamen, and achieves the best relative
coverage ratio of 86.52% in Xiamen with voluntary
participants, outperforming the baseline methods.
We also deploy a real-world Traffic Violation Hotspot
Patrolling Information Service System, as shown in
Fig. 9

2 RELATED WORK

In this section, we first introduce the mobile crowdsensing,
and then present an overview of the traffic violation infer-
ence and patrol task scheduling.

2.1 Mobile Crowdsensing

The mobile crowdsensing paradigm is one of the frontiers
of mobile computing and has been widely studied in the lit-
erature. It takes advantages of the pervasive mobile devices
and the power of crowd to facilitate large-scale sensing tasks
that are costly or time consuming [19], [20]. Specifically,
heterogeneous urban data, such as traffic violation events
and weather conditions, can be collected through mobile
crowdsensing systems.

It has been applied to many different areas and achieved
good performance. For example, Chen et al. [21] proposed
to plan city-wide package delivery paths leveraging crowd-
sensed taxi trajectories. Guo et al. [11] presented a mobile
crowdsensing system for cross-space public information
reposting, tagging, and sharing. Wang et al. [22] proposed
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a deep learning enabled industrial sensing and prediction
scheme based on Sparse Mobile Crowdsensing.

In this paper, we propose a context-aware self-adaptive
learning model combining tri-training and active learning
based on mobile crowdsensing to infer traffic violation
hotspots.

2.2 Traffic Violation Inference
Traffic violations refer to drivers’ behaviors that violate
traffic laws and have been a significant challenge in urban
transportation systems [1]. There are plenty of studies on
traffic violation inference [23], [24]. Artificial neural net-
works and deep learning approaches also have been used in
traffic violation detection [25], [26]. Also, crowdsensing plat-
forms for traffic violation reporting have been developed in
many cities, such as Shanghai and Xiamen in China. With
various of traffic violation inference technologies, the traffic
violation data can be collected easier. However, few studies
have been conducted on traffic violation hotspot modeling.

The context awareness computing is a mobile computing
paradigm where the contextual information (such as loca-
tions and time) is gathered to improve the performance of
systems or models [27]. Contexts have been leveraged in
numerous studies, such as road obstacle classification [28]
and search service [29], showing its potentiality and impor-
tance. In traffic violation hotspot inference, it is hard to infer
traffic violation hotspots comprehensively merely based on
violation data. Therefore, we involve cross-domain road
environment data to model the spatiotemporal contexts of
traffic violation-prone locations, and thus learn a classifica-
tion model to infer traffic violation hotspots accordingly.

Furthermore, we combine tri-training [30] and active
learning diagrams to address the challenge of insufficient
labels and make the model adapt to dynamic environments.
Tri-training algorithm employs three classifiers to provide
pseudo-labels for unlabeled data to refine the classifiers and
finally determine the labels of data with a voting mecha-
nism. It has been used in authorship attribution [31] and
unsupervised domain adaption [32], etc. Active learning im-
proves the performance of model by dynamically selecting
a set of ambiguous results and asking experts to label these
instances, and then it feeds them back to retrain the model
iteratively [33]. It has been used in recommender systems
[34] and task allocation in crowdsensing [35], etc.

In this paper, we first extract traffic violation events
from heterogeneous crowd-sensed data and cluster them
into traffic violation-prone locations. Then, we infer traffic
violation hotspots by combing tri-training and active learn-
ing based on the spatiotemporal contextual features.

2.3 Patrol Task Scheduling
The simplest scenario of patrol task scheduling can be
regarded as a conventional routing problem whose objective
is usually to select a path with minimal travel cost in a net-
work or across multiple networks. Many algorithms, such
as the Dijkstra algorithm and genetic algorithm, have been
proposed to solve these problems. Chevaleyre et al. [36] re-
gards this single-agent patrolling as the traveling salesman
problem (TSP). In real-world application, patrol routes to
be scheduled simultaneously are usually multiple. Hoffman

and Pavley introduced the k shortest paths problem for
the first time [37]. Eilam et al. [38] introduces the disjoint
shortest paths problem, and Tragoudas et al. [39] shows the
problem of computing a pair of disjoint paths between a
pair of nodes in an undirected graph is NP-complete.

Furthermore, many works have been proposed for var-
ious application scenarios in patrol task scheduling. How-
ever, many works [40]–[42] focus on the response perfor-
mance to emergencies [43], such as traffic accidents, while
the patrol routes designed for traffic violation hotspots give
priority to high coverages and low costs. Leigh et al. [44]
developed an algorithm to direct patrol routes by target-
ing high crime areas whilst maximizing demand coverage.
However, this work focuses on the officers’ allocation from
police stations to crime hotspots and does not take the
officers’ transfer between hotspots into account. Li et al. [45]
proposed an approach to obtain a near-optimal set of patrol
routes based on the transition matrix updated by the cross
entropy approach.

In this work, we propose a tensor-based integer lin-
ear programming modeling method to find optimal pa-
trol routes with a maximal coverage ratio of traffic viola-
tion hotspots under resource constraints incorporating the
power of voluntary participants.

3 PRELIMINARIES AND FRAMEWORK

Definition 1. Traffic Violation Events: the crowd-sensed
traffic violation events can be described by a set of traf-
fic violations denoted by 4-tuples, i.e., P = {p|p =
(t, lat, lng, type)}, where t, lat, lng, type are the time stamp,
latitude, longitude, and type of traffic violations.

Definition 2. Traffic Violation-Prone Location: traffic
violation-prone locations refer to locations with relatively
more traffic violations compared to other locations in the
road network. These locations might sometimes become
traffic violation hotspots.

Definition 3. Traffic Violation Level: traffic violation levels
refer to the intensity of traffic violations in traffic violation-
prone locations during specific time periods. Higher traffic
violation levels mean more frequent traffic violations. The
traffic violation levels of a traffic violation-prone location
varies with time. In this paper, traffic violation levels are
evaluated hourly.

Definition 4. Traffic Violation Hotspot: traffic violation
hotspots refer to traffic violation-prone locations during
specific time slots when they have high traffic violation
levels. In this paper, we divide traffic violation levels into
three categories, detailed in the Evaluation Section.

Definition 5. Patrol Route and Sub-Patrol Route: a patrol
route starts from an origin to a sequence of locations and
ends at a destination. Patrol routes are vertex-disjoint1

meaning that different patrol participants would not station
at the same location during the same time. A sub-patrol
route of a patrol route is the route from one patrol node to
another patrol node in this route.

1. More descriptions about the vertex-disjoint constraint can be found
in Appendix 3
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Fig. 3. Framework overview.

Definition 6. Patrol Participants: patrol participants are
people conducting patrol tasks. We define two groups of
patrol participants. The first group includes people who are
obligated to conduct patrol tasks such as traffic police, and
the second group are voluntary participants such as mobile
crowd users.

We propose a three-phase mobile crowdsensing frame-
work to dynamically infer traffic violation hotspots and
adaptively schedule patrol tasks. As shown in Fig. 3, we first
extract traffic violation events from heterogeneous crowd-
sensed data and cluster them into traffic violation-prone lo-
cations based on RCA. Then, we extract contextual features
from road environments for traffic violation-prone locations
and infer violation hotspots based on a CSTA model. Finally,
we propose a TILP-based method to find the optimal patrol
routes with a maximal coverage ratio of traffic violation
hotspots under resource constraints for traffic police and
incorporate voluntary participants when available.

4 TRAFFIC VIOLATION-PRONE LOCATION EX-
TRACTION

The development of crowdsensing systems enables the col-
lection of large-scale heterogeneous data, such as vehicle
trajectories, street view pictures, and road network data.
These data provide us with great opportunities to extract
traffic violation events and explore traffic violation-prone
locations in cities. However, traffic violations are scattered
across the whole road network. It is unrealistic and unrea-
sonable to predict when and where a specific traffic violation
event may happen and design patrol routes to prevent
each single traffic violation incident. Instead, since traffic
violations are highly dependent on the road network, they
can be grouped according to their corresponding road seg-
ments or intersections, such as illegal turnings happening in
the same intersection and illegal parking behaviors on the
same road segment. Besides, although traffic violations are

scattered across the whole road network, they are not scat-
tered uniformly. Some locations have relative more traffic
violations than others, and due to limited patrol resources
(e.g., traffic police and voluntary participants), only those
traffic violation-prone locations with more traffic violations
than other locations should be considered when scheduling
patrol tasks for patrol participants. In this section, we first
extract traffic violation events from heterogeneous crowd-
sensed data, and then introduce a road network-based clus-
tering algorithm (RCA) to cluster scattered traffic violations
into traffic violation-prone locations.

4.1 Traffic Violation Crowdsensing
We extract traffic violation events from large-scale crowd-
sensed vehicle trajectories and road environments leverag-
ing the method proposed by [7]. Specifically, we first nor-
malize the vehicle trajectories by mapping the trajectories
onto the road network leveraging a map matching algo-
rithm based on Hidden Markov Model [46], and then extract
three types of driving behaviors, i.e., turning behaviors,
parking behaviors, and speeds of vehicles from the nor-
malized trajectories. Second, we model driver perspectives
based on regression to restore spatiotemporal contexts of
driving behaviors. After that, we train a YOLOv3-based traf-
fic sign detector to detect traffic signs from corresponding
street view images and extract road speed restrictions from
map open platform. Finally, through matching the traffic
restriction information with driving behaviors, we identify
three types of traffic violations (i.e., illegal turning, illegal
parking, and speeding). More details can be found in [7].

4.2 Road Network-Based Clustering Algorithm
The proposed algorithm is described in Algorithm 1.
First, we obtain the road network data from Open-
StreetMap2, and divide the road network into two cate-

2. http://www.openstreetmap.org/
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Algorithm 1: The road network-based clustering
algorithm (RCA).

Input: R: The set of intersections and segments
P : The set of traffic violations
δ: The distance threshold

Output: S: The set of clusters
1 for p ∈ P do
2 assign p to nearest r ∈ R
3 S ← select r ∈ R with p
4 Sx ← sort S according to longitude
5 Sy ← sort S according to latitude
6 dmin ←∞, dmin ← closest(Sx, Sy , dmin)
7 while dmin < δ do
8 remove the two closest elements ri, rj from S
9 rnew.lat← (ri.lat+ rj .lat)/2

10 rnew.lng ← (ri.lng + rj .lng)/2
11 rnew.tv ← ri.tv + rj .tv
12 add rnew into S
13 Sx ← sort S according to longitude
14 Sy ← sort S according to latitude
15 dmin ←∞, dmin ← closest(Sx, Sy , dmin)

gories {intersection, segment}. Intersection is the road
intersection and segment is the road segment. R is the
set of intersections and segments. P is the set of traffic
violations. For each traffic violation p ∈ P , if it is an illegal
turning behavior, we map it to the nearest intersection, and
if it is illegal parking or illegal speeding, we assign it to the
nearest segment. After that, we select the intersections or
segments with traffic violations, denoted as a set of 3-tuples,
S = {r|r = (lat, lng, tv)}, where lat, lng, tv are the average
latitude, average longitude, and the set of traffic violations
in intersection or segment r.

After getting S, we find the closest pair in S and if
the distance of the closest pair (ri, rj)is less than a distance
threshold δ, ri and rj are combined into one new element
rnew. The latitude of rnew is the average latitude of ri and
rj , and the longitude of rnew is the average longitude of ri
and rj . The sets of traffic violations in ri and rj are also
combined into the set of traffic violations in rnew. ri and rj
are removed from S, and rnew is added into S. This process
is repeated until the distance of the closest pair in S is no less
than δ. The algorithm closest to find the closest two locations
on the road network is detailed in Appendix 1.

After the clustering, the scattered traffic violations are
clustered into traffic violation-prone locations. The reason
for using the distance-based clustering is that the patrol
participants can only cover a limited distance around them
when stationing at a location. So traffic violations within
this distance can be monitored by one patrol group, and
those out of this distance should be monitored by other
groups. Patrol tasks can thereby be assigned in units of
traffic violation-prone locations.

Suppose there are n elements in S, the time complexity
of the algorithm closest used in this paper is O(nlogn),
and the time complexity of the Algorithm 1 is O(n2logn)
(detailed in Appendix 1). In particular, this algorithm is scal-
able. More specifically, if new traffic violations are added,
we first assign them to the nearest r, if r belong to one
cluster s in the current cluster set S, we add new traffic
violations into s and update properties of s. If r does not

Fig. 4. The context-aware self-adaptive learning model (CSTA).

belong to any cluster in S, we can combine r with the
current cluster set S, and input the new cluster set into
the algorithm to update the cluster set. Besides, for each
traffic violation-prone location, we can aggregate its traffic
violations every time span3 to get its temporal pattern
for traffic violations. In this paper, we aggregate its traffic
violations and get its traffic levels hourly, detailed in the
Evaluation Section.

5 TRAFFIC VIOLATION HOTSPOT INFERENCE

In order to schedule patrol tasks with a maximal coverage
ratio of traffic violation hotspots timely, we need to infer dy-
namic traffic violation hotspots (i.e., traffic violation-prone
locations with high traffic violation levels). Generally, such
hotspots are more likely to be added to patrol routes. How-
ever, since the distribution of traffic violations is uneven,
it is in-comprehensive to infer hotspots merely based on
the traffic violation data. Therefore, we incorporate cross-
domain road environment data to model spatiotemporal
contexts of traffic violation-prone locations, and then infer
traffic violation hotspots based on the contextual features.

In particular, we extract two categories of contextual
features from road environment data. The first category is
temporal contexts, such as date and meteorological condi-
tions. For example, traffic violations may happen frequently
in rush hours but rarely in other time periods, and more
in rainy days than in sunny days. The second is spatial
contexts, such as points of interest around and road cat-
egories. For example, a shopping mall nearby may cause
frequent illegal parking on a road. After the extraction of
contextual features, intuitively, we can train a classifier to
infer traffic violation hotspots. However, it is difficult and
time-consuming to obtain a labeled dataset (i.e., the traffic
violation levels of traffic violation-prone locations) with size
large enough for training a classifier, since there are many
traffic violation-prone locations and each violation-prone
locations have traffic violation levels vary across time.

To address the challenges of insufficient labels and adapt
the model to dynamic environments, we propose a context-
aware self-adaptive learning model combining tri-training
and active learning (CSTA). We first use a bootstrap sam-
pling method to generate three training datasets from the
labeled dataset, and then input them into tri-training frame-
work. We use a crowd-based active-learning mechanism to
vote for labels for ambiguous instances generated in the
tri-training process and gradually adapt the model to local
environments. The design of CSTA model is illustrated in
Fig. 4. We elaborate on contextual feature extraction and the
CSTA model as follows.

3. The minimal time span for scheduling patrol tasks, determined by
specific application scenarios.
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5.1 Contextual Feature Extraction
5.1.1 Temporal Contextual Feature
The violation level of a traffic violation-prone location may
vary significantly with different temporal contexts. For ex-
ample, the traffic is usually heavy in rush hours, and thus
there are usually more traffic violations, and in appalling
weather, drivers may fail to see traffic signs clearly and
violate traffic regulations. In particular, we extract the fol-
lowing two groups of key temporal contextual features that
may relate to traffic violations from the corresponding road
environment data.

Date and Time Features: Traffic violations in a lo-
cation show periodic characteristics, and traffic violation
hotspots with similar temporal patterns may have similar
violation levels. Through incorporating the date and time
features, hidden temporal dependencies among traffic vio-
lation hotspots can be captured. Therefore, we extract the
hour of a day, day of a week, day of a year, day of a month, month
of a year, week of a year, and the quarter as the date and time
features. These features can be generated automatically.

Meteorological Features: The meteorological features
can influence the visibility of traffic signs and roads as well
as the mood of drivers related to traffic violations. Therefore,
we extract the temperature, dew point, humidity, wind speed,
and pressure as meteorological features. These features can
be extracted from the meteorological data collected from the
Weather Underground API4.

5.1.2 Spatial Contextual Feature
Based on the previous studies and surveys, the geographic
environment of a location can have a significant influence
of potential traffic violations [47]. For example, a location
surrounded by many restaurants may see a lot of illegal
parking behaviors, and a road segment with low speed limit
may witness a lot of speeding. In particular, we extract the
following two groups of key spatial contextual features that
may relate to traffic violations from the corresponding road
environment data.

POI Features: Point of interest (POI) is a specific location
that someone may find useful or interesting, and different
categories of POIs have different influences on the traffic
violations nearby. We divide POIs into five categories, busi-
ness, accommodation, entertainment, infrastructure, tourism. The
business category includes the enterprises, business build-
ings and other business points; the accommodation category
includes the restaurants, hotels, communities and other
accommodation points; the entertainment category includes
the shopping centers, cinemas, bars and other entertainment
points; the infrastructure category includes the hospitals,
banks, stations, government agencies and other infrastruc-
ture points; the tourism includes the tourist spots. We count
the number of POIs for each category and build the POI
features. The POI data are collected from BaiduMap5.

Location Features: For each traffic violation-prone lo-
cation, it has specific latitude, longitude, road category, and
speed limit that may influence its traffic violation patterns.
For example, there are usually few traffic violations on
broad highways, while on remote roads, traffic violations

4. https://www.wunderground.com/weather/api/
5. https://map.baidu.com/

Algorithm 2: The tri-training and active learning
algorithm.

Input: D0
L: Labeled dataset, D0

U : Unlabeled dataset, ε:
The label ability of crowd, Learn: Learning
algorithm

Output: DL: Labeled dataset,
C1, C2, C3: The learned classifiers

1 Initialize: DU ← D0
U , A← ∅

2 for i ∈ {1, 2, 3} do
3 Di

L ← BootstrapSampling(D0
L), Ci ← Learn(Di

L)
4 while Ci,∀i ∈ {1, 2, 3} has changed do
5 for i ∈ {1, 2, 3} do Lui ← Ci(DU )
6 for k ∈ DU do
7 a) Select confident instances :
8 if Lu1(k) = Lu2(k) = Lu3(k) then
9 add Lu1(k) into D1

L, D
2
L, D

3
L

10 b) Select relatively confident instances:
11 if Lua(k) = Lub 6= Luc then
12 (a, b, c ∈ {1, 2, 3}, a 6= b 6= c)
13 add Lua(k) into Dc

L

14 c) Select ambiguous instances:
15 if Lua(k) 6= Lub 6= Luc and size(A) < ε then
16 (a, b, c ∈ {1, 2, 3}, a 6= b 6= c)
17 add subsample(k) into A
18 LA ← Crowd V oting(A)
19 add LA into D1

L, D
2
L, D

3
L

20 for Di
L(i ∈ {1, 2, 3}) who has changed do

21 Ci ← Learn(Di
L)

22 for i ∈ {1, 2, 3} do Lui ← Ci(D
0
U )

23 DL ← voting(Lu1, Lu2, Lu3)

may frequently happen. Therefore, we extract the latitude,
longitude, road category, and speed limit as location features.
The road category and speed limit data can be collected from
Gaode Map Open Platform6.

5.2 Traffic Violation Hotspot Inference
5.2.1 Tri-Training and Active Learning Paradigm
Due to the label insufficiency, we combine tri-training and
active learning in our learning model. We first use a boot-
strap sampling method to generate three training sets and
train three classifiers. In each round of tri-training, the
instances that receive the same labels from three classifiers
with high confidence are added to the training dataset, and
the instances that receive the same labels from two classifier
are labeled for the third classifier. The classifiers would be
retrained if their corresponding training datasets have been
updated. Besides, for instances that receive the different
labels from all three classifiers, they are sampled randomly
and added to an ambiguous dataset to be labeled by crowd
voting, and the size of the ambiguous dataset is limited by
the label ability of crowd. This process is iterated until none
of the learned classifiers updated, and the final labels of
the unlabeled data are determined by majority voting. The
detailed process is described in Algorithm 2.

D0
L is the labeled dataset including the above-mentioned

features of traffic violation-prone locations and labels (i.e.,
traffic violation levels). D0

U is the unlabeled dataset. ε is the
label ability of crowd. First, a bootstrap sampling method is
used to generate three training sets from D0

L, and based

6. https://lbs.amap.com
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on these three training sets, we train three multi-class
classifiers. Since the classifier is updated frequently and is
capable of dealing with heterogeneous features, we adopt
the XGBoost [48] in this paper. Then we use the classifiers
to label the unlabeled dataset DU . For each instance k in
DU , if it receive the same labels from three classifiers, it is
regard as confident instance and is added to the training
sets of the three classifiers. If it receive the same labels from
two of three classifiers, it is regarded as relatively confident
instance and its label from the two classifiers is added to
the third one. If it receive different labels from all three
classifiers, it is randomly added to an ambiguous dataset A.
If the size of A does not exceed the label ability of crowd ε,
the ambiguous instance would be labeled by crowd. Then
for classifiers whose training set has been updated, the
classifier would be retrained. This process is iterated until
none of the learned classifiers updated. Finally, we use the
three learned classifiers to label the unlabeled datasets with
confidence. For each unlabeled instance, we aggregate its
label results from all classifiers and assign the label with
highest confidence to it.

5.2.2 Self-Adaptive Inference
The road environment may gradually change over time,
thus our learning model works in an online manner, so it is
adaptive to the current road environment. More specifically,
given new dataset Ds

L collected by crowd (i.e., traffic police
or mobile crowd users) in a period of time T , we add them
into the current training setDL and drop the data in the first
T of the time span in DL, and then update the model. Or
given a new traffic violation-prone location l, we apply the
classifier C1, C2 and C3 on l separately and determine its
label by voting mechanism. If it gets the same label from no
less than two classifiers, we add l into the training dataset
DL and retrain the classification model. If it receives totally
different label from three classifiers, we ask crowd to vote
for its final label and retrain the model. Since the online
model is updated frequently, highly scalable, easy to train,
and is capable of dealing with heterogeneous features, we
adopt the XGBoost [48] as the ideal multi-class classifiers in
this paper. This algorithm is also adaptive to other learning
algorithms such as AdaBoost [49] and lightGBM [50].

6 PATROL ROUTE OPTIMIZATION

In this section, our objective is to adaptively schedule patrol
tasks with a maximal coverage ratio of traffic violation
hotspots to patrol participants (i.e., traffic police or volun-
tary participants) under resource constraints based on the
traffic violation hotspot distribution. In patrol task schedul-
ing, the compromise between the coverage ratio of traffic
violation hotspots and route length as well as sub-route
length is a great challenge to be addressed. The effective
of patrol requires high coverage ratio of traffic violation
hotspots of patrol routes, while the length of patrol routes
and sub-patrol routes should be constrained so as to reduce
travel costs and guarantee timely responses. Moreover, the
number of routes is consistent with the number of patrol
participants that work independently, which means that
more than one routes are required to be allocated and there
should not exist any overlapping in their routes except for

Fig. 5. The structure of the directed graph G modeled from the distribu-
tion of traffic violation hotspots.

the origin and the destination. Besides, the traffic violation
hotspots are dynamic, which means each location can not be
regarded as one fixed vertex. Also, when optimizing patrol
routes, we incorporate the potential crowd power to further
improve the coverage of traffic violation hotspots.

Therefore, we propose a tensor-based integer linear pro-
gramming modeling method (TILP) to find optimal vertex-
disjoint patrol routes with a maximal coverage ratio of traffic
violation hotspots under route length, sub-route length,
and vertex-disjoint constraints. First, based on the traffic
violation hotspot distribution, we generate patrol routes
based on a directed graph and model the optimal k patrol
route problem whose objective is to find the optimal routes
with a maximal coverage ratio of traffic violation hotspots
under route length, sub-route length, and vertex-disjoint
constraints. Then, we generate two groups of patrol par-
ticipants including traffic police and voluntary participants.
We estimate the potential voluntary participants for traffic
violation hotspots based on the spatiotemporal patterns of
bike returning events in the bike sharing system. Finally,
we build corresponding adjacency tensor, gain tensor, cost
tensor, crowd tensor to transfer the optimization problem
into an integer linear programming problem and find the
optimal solution.

6.1 Patrol Route Generation
Based on the distribution of traffic violation hotspots,
we generate possible patrol routes with a directed
graph G = (V,X), as shown in Fig. 5, where V =
{v(0,0), v(2,1), ..., v(N−1,1), v(1,2), ..., v(N−1,T−1), v(N,T )},
v(n,t) (n ∈ [1, N − 1], t ∈ [1, T − 1]) denotes the node
corresponding to the traffic violation hotspot n at time t,
v(0,0) and v(N,T ) denote the origin and destination of patrol
routes, respectively. For each node v(n,t), it has an attribute
Level(n,t) representing the violation level of traffic violation
hotspot n at time t.

A route i from v(0,0) to v(N,T ) can be denoted by a
sequence of nodes, v(0,0) → vi(q1,1) → vi(q2,2) → ... →
viqt−1,T−1 → v(N,T ), where 1 ≤ q1, q2, ..., qT−1 ≤ N −1, and
for each node vi(n,t), it has a violation level Leveli(n,t). The
length of route i is denoted as li. Our objective is to find op-
timal k routes between v(0,0) and v(N,T ) so that these routes
have the maximal coverage ratio of traffic violation hotspots
weighted by their violation levels under the constraints that
their overall length is no longer than a threshold µ and
the k routes are vertex-disjoint except for v(0,0) and v(N,T ).
Furthermore, to guarantee that a police officer can move
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from one node to another timely, the distances between each
pair of successive nodes are limited by a threshold λ.

With the above-mentioned definitions, we model the k
patrol route optimization as follows.

Problem: (Optimal k Patrol Route Modeling)

maximize
k∑
i=1

T−1∑
t=1

Leveli(qt,t) (1)

subject to

viqt,t 6= vjqt,t,∀i, j ∈ [1, k], i 6= j, t ∈ [1, T − 1] (2)
k∑
i=1

li ≤ µ (3)

∀i ∈ [1, k], t ∈ [0, T − 1],

dist(viqt,t, v
i
qt+1,t+1) ≤ λ (4)

The objective 1 is to maximize the coverage ratio of
traffic violation hotspots weighted by their violation levels.
The requirement 2 represents that these k routes are vertex-
disjoint except for the start and end nodes. The requirement
3 represents that the overall length of the k routes is no
longer than a threshold µ. The requirement 4 represents that
for each pair of successive nodes in patrol routes, the route
length between them is no longer than a threshold λ.

6.2 Patrol Participant Generation
We divide the patrol participants into two groups. People in
the first group are obligated to conduct patrol tasks, such as
traffic police. They usually have fixed origins, destinations,
and working hours, and their origins and destinations are
in the same locations (e.g., traffic police stations), meaning
that v(0, 0) is equal to v(N,T ).

The second group are voluntary participants willing to
conduct patrol tasks. With the intuition that people who
have just arrived at their destinations may willing to spare
some time to look around, we incorporate mobile crowd
users of bike sharing systems to collaboratively patrol with
traffic police. Since there is no specific station in bike sharing
systems, the bike returning events almost distribute across
the whole road network. For a traffic violation hotspot, the
more bike returning events happen nearby simultaneously,
the more the potential crowdsensing participants exist for
this hotspots, so the traffic police are more likely to off load
this patrol task to voluntary participants.

More specifically, for each location, we extract the
weekly spatiotemporal patterns of bike returning events
within a distance threshold τ . For node v(n,t) in G, the
expectation of bike returning events Crowd(n,t) is defined
as the average number of bike returning events during the
same time slot in the same day of a week in the weekly
spatiotemporal patterns, and the probability of successfully
recruiting a voluntary participant for node v(n,t) is defined
as pcrowd(n,t) = 1−(prej)Crowd(n,t) , where prej is the probability
of a person rejecting the patrol task.

6.3 TILP-Based Patrol Route Optimization
Based on the optimal patrol route modeling above, we
transfer this optimization problem to an integer linear pro-
gramming problem through four tensors. We elaborate the

details of the three tensors as follows, and the illustration
can be found at Appendix 2.

Adjacency Tensor: We use a ((N + 1) × (N + 1) × T )-
tensor X to denote edges of graph G, where x(i,j,t) ∈ {0, 1}
denotes the edge between traffic violation-prone location i
and location j at time t. If x(v,w,t) = 1, it means that there is
a transfer from location i to location j at time t, otherwise,
there is no transfer.

Gain Tensor: We use a ((N +1)× (N +1)×T )-tensor L
to denote the gain of moving from one location to another,
where l(i,j,t) = Level(j,t), meaning the traffic violation level
of location j at time t.

Cost Tensor: We use a ((N +1)× (N +1)×T )-tensor D
to denote the cost of moving from one location to another,
where d(i,j,t) = dist(i, j), meaning the route distance from
location i to j. The route distance is the shortest length of
road segments from one location to another.

Crowd Tensor: We use a ((N + 1) × (N + 1) × T )-
tensor B to denote the potential voluntary participants,
where b(i,j,t) = pcrowd(j,t) . The value of b(i,j,t) increases with
the rise of expected voluntary participant number of node
v(j,t), and b(i,j,t) ∈ (0, 1]. If voluntary participants are out of
consideration, all elements in B are set to 0.

Then our optimization problem can be rewritten as an
integer programming problem with the objective of max-
imizing the gain under the travel cost and vertex-disjoint
constraints.

Problem: (Integer Programming Problem)

argmax
X

L ·X +
φ(B) · φ(L) · (1− φ(X))

(N + 1)2
(5)

subject to
N∑
j=1

x0,j,1 =
N∑
i=0

N∑
j=0

xi,j,1 =
N∑
j=0

T∑
t=1

x0,j,t = k (6)

N∑
i=0

xi,N,T = k (7)

N∑
i=0

T−1∑
t=1

xi,0,t =
N∑
i=0

T−1∑
t=1

xi,N,t = 0 (8)

∀t ∈ [1, T − 1], p ∈ [1, N − 1],
N−1∑
i=0

xi,p,t =
N−1∑
j=0

xp,j,t+1 ≤ 1 (9)

D ·X ≤ µ (10)
∀i ∈ [0, N ], j ∈ [0, N ], t ∈ [1, T ],

xi,j,t ∈ {0, 1}, di,j,txi,j,t ≤ λ (11)

The objective of this problem 5 is to find the X

that maximizes L · X + φ(B)·φ(L)·(1−φ(X))
(N+1)2 , where L ·

X =
∑N
i=0

∑N
j=0

∑T
t=1 bi,j,tli,j,txi,j,t representing the ex-

pected coverage by the first group of patrol participants.
φ(B)·φ(L)·(1−φ(X))

(N+1)2 representing the expected coverage by
the second group, where φ(B) is a (N + 1) × T -matrix,
φ(B)j,t =

∑N
i=0 bi,j,t. The definitions of φ(L) and φ(X) are

similar to φ(B).
For requirement 6,

∑N
j=1 x0,j,1 represents the number of

routes starting from the origin when t = 1;
∑N
i=0

∑N
j=0 xi,j,1

represents the number of routes starting when t = 1;
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TABLE 1
Summary of Traffic Violation Data and Road Environment Data

Data type Item Chengdu Xiamen

Traffic Illegal parking 14,790 8,184
Violations Illegal turning 504,872 627,279

Speeding 1,198,941 109,737

Environment

POI 834 12,228

Data Road category

main road, minor road, main road, minor road,
non-navigational road, ordinary road non-navigational road, ordinary road
urban expressway urban expressway, provincial highway,

national highway, country highway

Speed limit 5 km/h, 30 km/h, 40 km/h, 50km/h, 60 km/h, 70 km/h, 80 km/h

Meteorological temperature, dew point, humidity, wind speed, pressure (every hour)

Geographic coverage [30.655191,104.129591], [30.652828,104.042102] [24.423250,118.064743], [24.423250,118.198504]
(WGS-84) [30.727818,104.043333], [30.726490,104.129076] [25.561485,118.064743], [24.561485,118.198504]

∑N
j=0

∑T
t=1 x0,j,t represents the the number of routes start-

ing from the origin. Therefore, this requirement represents
that all k routes starts from v(0,0) when t = 1. For re-
quirement 7,

∑N
i=0 xi,N,T = k represents that all k routes

end at v(N,T ). For requirement 8,
∑N
i=0

∑T−1
t=1 xi,0,t =∑N

i=0

∑T−1
t=1 xi,N,t = 0 represents that no route would

return to the origin location or end at destination before
the end time. Requirements 6, 7, and 8 together guarantee
the basic structure of the Graph G.

The requirement 9 represents that the number of groups
that transfers to v(p,t) is equal to the number of that leaves
this node, and this number is no more than one. This
formula guarantees that no more than one group will travel
to the same location at the same time except for the origin
and destination, satisfying the vertex-disjoint constraint.

For requirements 10 and 11, since x(i,j,t) and d(i,j,t)
denote the connectivity and route distance between node
v(i,t−1) and v(j,t), D · X =

∑N
i=0

∑N
j=1

∑T
t=1 di,j,txi,j,t

represents the overall route length, and di,j,txi,j,t represents
the the route length between node v(i,t−1) and v(j,t). The
overall route length is no longer than a threshold µ, and the
sub-route length is no longer than a threshold λ, satisfying
the route length constraints.

Solution: this integer programming problem can be
solved by various techniques, such as cutting plane, branch
and bound, and heuristic search [51]. The basic steps include
narrowing the solution space, finding integer-feasible solu-
tions, and discarding space without better integer-feasible
solutions. In this work, we employ the Integer Linear Pro-
gramming Solver from the Matlab Optimization Toolbox7 to
find the optimal solution.

7 EVALUATION

In this section, we evaluate the performance of our frame-
work based on two real-world traffic violation datasets from
two Chinese cities (Chengdu and Xiamen. We first describe
the datasets and the experiment settings. Then, we present
the evaluation results and runtime performance. Finally, we
give several case studies.

7. https://www.mathworks.com/help/optim/index.html.

7.1 Experiment Setting

7.1.1 Datasets
We evaluate our framework in Xiamen and Chengdu in
China. Xiamen is a coastal city, and we obtain its traffic
violations and various road environment datasets during
September 2016. Also, we obtain its bike returning data
from June to December in 2017. Chengdu is an inland city,
and we collect the data from a part of its second ring
road area during November 2016. The data analyses of
the spatiotemporal contexts and bike returning data can be
found at Appendix 4. The traffic violation data and road
environment data are summarized in Table 1 and the details
and preprocessing steps are elaborated as follows.

Traffic violation data: The traffic violation data are
obtained through analyzing crowd behaviors of drivers8,
consisting of three categories, i.e., illegal turning, illegal
parking, and speeding, detailed in Table 1. Specifically, since
the data from Xiamen and Chengdu are both in one month,
the date and time features exclude quarter and month of a
year. Fig. 6 shows the temporal distributions of traffic vio-
lations in Chengdu (November) and Xiamen (September),
respectively. We can find that traffic violations in Chengdu
mainly happen in the daytime while those in Chengdu
mainly happen at midnight. The number of traffic violations
in Chengdu fluctuated regularly during November, 2016,
while that in Xiamen was influenced by two typhoons (i.e.,
Meranti on September 15th and Megi on September 27th) in
September. Fig. 7 shows the temporal distributions of traffic
violations in a typical weekday and weekend Chengdu and
Xiamen, from which we can find that the distributions of
weekdays and weekends in Chengdu are similar, while in
Xiamen, there are two traffic violation peaks in weekends
and one traffic violation peak in weekdays.

Road environment data: After clustering traffic viola-
tions into traffic violation-prone locations, for each location,
we collect its corresponding road environment data, i.e.,
POI, road category, speed limit and meteorological data, as
shown in Table 1. For each location, we count the number

8. More details about the traffic violation crowdsensing can be found
at [7], and the traffic violation dataset can be found at:
https://github.com/zhihanjiang/traffic violations.
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(a) Chengdu (b) Xiamen

Fig. 6. The traffic violation number in a month.

(a) Chengdu (b) Xiamen

Fig. 7. The temporal distributions of traffic violations in a typical weekday
and weekend.

of five different categories of POIs, business, accommodation,
entertainment, infrastructure, tourism within 200 meters as
its POI features, and we get its road category and speed
limit from Gaode Map Open Platform. Note that for road
intersections, if it is in the intersection of roads with different
road categories and speed limits, its road category and
speed limit are defined as the lowest road category and the
lowest speed limit. We also compiled an hourly meteorology
dataset for each traffic violation hotspots, containing the
temperature, dew point, humidity, wind speed, and pressure,
based on the data from the Weather Underground API.

Bike returning data: The bike returning data are from
Meituan Bike (Mobike), one of the largest bike-sharing sys-
tem in China, including the location and time of 23,173,453
bike returning events in Xiamen from June to December in
2017. We use this dataset to extract weekly spatiotemporal
patterns of bike returning events of traffic violation-prone
locations to estimate potential voluntary participants.

7.1.2 Evaluation Plan

We evaluated the performance of our framework in an
online manner. We first cluster traffic violations into traffic
violation-prone locations, and start training the CSTA model
with a small labeled sample collected in the first week. Then
we infer labels for the unlabeled data in first week with
the learned CSTA model and get a labeled dataset with a
time window of one week. Then we update the training
dataset and the model with data collected from a newer
time window. For patrol route optimization, we generated
the optimal patrol routes twice every day (8:00-12:00 and
14:00-18:00) for each district in each city, and compare the
relative coverage ratio of traffic violation hotspots and the
average route length with the baseline methods to evaluate
the effectiveness of our approach. For traffic police, the
origins and destinations of their patrol routes are the same,
i.e., v(0,0) is equal to v(N,T ). In Chengdu, we only schedule
patrol routes for traffic police, and in Xiamen, we further

take the potential voluntary participants into consideration
leveraging bike sharing data.

For each traffic violation-prone location, we aggregate its
traffic violations hourly and divide its violation level of each
hour into three categories, {0, 1, 2}. More specifically, we
first calculate the mean (mt) and standard deviation (stdt)
of traffic violation values in hour t. Then, we define the
violation level of location i in hour t as follows:

Level(i,t) =


0, if tv(i,t) ≤ mt

1, if mt < tv(i,t) ≤ mt + 2stdt
2, if tv(i,t) > mt + 2stdt

where tv(i,t) is the number of traffic violations of location
i in hour t. If the number of violations in a location is
lower than the average number of violations of all locations
at this time, its violation level is zero, which means it is
not a violation hotspot. For traffic violation hotspots, their
violation levels are divided into two categories, i.e., {1, 2}.

7.1.3 Evaluation Metric
We compared the results of traffic violation hotspot infer-
ence with the ground truth dataset to evaluate the accuracy
of a multi-classification method. The metrics used for traffic
violation hotspot inference are precision, recall, and F1-Score.

Based on the definitions in Section 6, we compared the
patrol routes’ relative coverage ratio covr , average route
length of the proposed patrol routes len, and the maximal
length of sub-routes slen of the proposed TILP method with
baseline methods to evaluate its effectiveness:

covp =

∑k
i=1

∑T−1
t=1 Leveli(qt,t)∑N

n=1

∑T−1
t=1 Level(n,t)

(12)

covb =

∑T−1
t=1

∑
u p

crowd
(u,t) Level(u,t)∑N

n=1

∑T−1
t=1 Level(n,t)

(13)

covmax =

∑k
i=1

∑T−1
t=1 maxith{Leveli(j,t)|1 ≤ j ≤ n}∑N

n=1

∑T−1
t=1 Level(n,t)

(14)

covr =
covp + covb
covmax

, len =

∑k
i=1 li
k

(15)

slen = max({di,j,txi,j,t|i, j ∈ [0, N ], t ∈ [1, T ]}) (16)

The covp means the ratio of traffic violation hotspots
covered in patrol routes of the first group of patrol par-
ticipants to all traffic violation hotspots during working
hours, and the traffic violation hotspots are weighted by
their violation levels. The covb means the expectation of
traffic violation hotspots covered by voluntary participants,
where u denotes the set of nodes uncovered in the patrol
routes of the first group of patrol participants. If the vol-
untary participants are out of consideration, covb is set to
0. The covmax means the maximal ratio of weighted traffic
violation hotspots that can be covered by limited patrol
resources, and maxith{Leveli(j,t)|1 ≤ j ≤ n} means the
ith maximal Level at time t. The relative coverage ratio
covr is the ratio of the coverage ratio of traffic violation
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hotspots to the maximal coverage ratio that can be achieved
with limited patrol resources. The len means the average
length of all patrol routes during working hours. If the covr
of a method is higher than other methods, it means this
method can cover more traffic violation hotspots weighted
by their levels than other methods. If the len of a method
is lower than other methods, it means this method can
generate patrol routes with lower travel costs. slen is the
maximal value of lengths of sub-routes in patrol routes. To
guarantee timely transfer from one patrol node to another,
slen should not be too long, and if the slen of a method is
lower than other methods, it means the longest time this
method requires to transfer from one patrol node to another
is shorter than that of other methods.

7.1.4 Baseline Methods
We compare our method with various baseline methods. For
traffic violation hotspot classification, the dataset is split into
labeled datasetDall

L (80%) and unlabeled datasetDall
U (20%).

we compared our CSTA model with the following baselines:
STGCN [17]: STGCN (Spatio-Temporal Graph Convo-

lutional Network) is a deep leaning framework to fore-
cast time series in traffic domain. Through spatiotemporal
convolutional blocks, it combines graph convolution with
gated temporal convolution. The problem is formulated
on graphs. Nodes of the graph are traffic violation-prone
locations, and the weights of edges are calculated using
geographical distances. For each node, it has spatial features
(i.e., the extracted spatial contextual features) and temporal
features (i.e., the time series of traffic violations in this
location). The time series are divided into the two parts, i.e.,
the first 80% for training and the remaining 20% for testing.

DCRNN [18]: DCRNN (Diffusion Convolutional Recur-
rent Neural Network) is a deep learning framework lever-
aging the encoder-decoder architecture and the scheduled
sampling technique to facilitate long-term traffic forecasting.
Similar to STGCN, the problem is formulated on graphs,
and the spatiotemporal features is the same as that for
STGCN. Nodes of the graph are traffic violation-prone lo-
cations, and the weights of edges are calculated using the
Pearson correlation coefficients of temporal features [18].

AGCRN [52]: AGCRN (Adaptive Graph Convolutional
Recurrent Network) captures fine-grained correlations in
traffic series automatically for traffic forecasting. The prob-
lem is formulated on graphs based on the traffic violation
series similarity, and the nodes of the graph are traffic
violation-prone locations.

CLarge: it directly trains a XGBoost classifier based on
Dall
L leveraging the spatiotemporal contextual features, and

the performance is evaluated based on Dall
U .

CSmall: it directly trains a XGBoost classifier with the
small labeled dataset D0

L sampled from the first week in
Dall
L leveraging the spatiotemporal contextual features and

the performance is evaluated based on Dall
U .

CSAL: it exploits active learning to train the classifier
iteratively from the small labeled dataset D0

L sampled from
the first week in Dall

L leveraging the spatiotemporal contex-
tual features, and generate queries for crowd automatically.
Its performance is evaluated based on Dall

U .
CSTT: it first train three classifiers from the small labeled

dataset D0
L. These classifiers are then iteratively refined

using unlabeled data in the tri-training process. The final
labels of the unlabeled data are determined by majority
voting. Its performance is evaluated based on Dall

U .
In order to achieve fair comparison, we make sure that

the initial labeled dataset D0
L used in each semi-supervised-

learning-based methods (including SMALL, CSAL, CSTT,
and CSTA) are the same, and the total number of queries
generated in each active learning-based methods (including
CSAL and CSTA) are the same. Besides, the parameters used
in XGBoost classifiers in all methods are the same. For deep-
learning-based methods (STGCN, DCRNN, and AGCRN),
the training set and testing set are the same.

For patrol route optimization, we compared our graph-
based model with the following baselines:

GRASP [53]: a Greedy Randomized Adaptive Search
algorithm. At each iteration of the GRASP, a feasible so-
lution is constructed by a greedy randomized algorithm.
At each step of the construction phase, next checkpoint to
be visited is randomly drawn according to distance based
probability. The above procedures are repeated until all
routes are closed.

DGS [54]: a Dynamic Greedy Solution for patrol route
planning. In this baseline method, we greedily select the
locations with highest violation level for each patrol route,
and guarantee the patrol routes are vertex-disjoint. The
the importance of each patrol node in this algorithm is
determined by its traffic violation level.

YEN [55]: in this baseline method, we use the algorithm
proposed by Yen to find k-shortest paths, and the edge
weight from one location to another is determined by the
route distance.

TS-MOEA [56]: a two-stage evolutionary algorithm for
multi-objective multi-depot vehicle routing problem with
time windows (MDVRPTW). If first finds extreme solutions
and forms a coarse Pareto front, and then it extends the
found extreme solutions for approximating the whole Pareto
front. We define the traffic police and violation hotspots as
the vehicles and customers in MDVRPTW, respectively.

CCMO [57]: the CCMO method evolves one population
to solve the original routing problem with time windows,
and evolves another population to solve a helper problem
derived from the original one. The problem definitions are
similar to TS-MOEA.

In order to achieve fair comparison, we make sure that
the traffic violation hotspot distribution, route distances
between traffic violation-prone locations, and the number of
patrol routes to be optimized are the same for each method.

7.2 Evaluation Results

7.2.1 Traffic Violation-Prone Location Extraction
After traffic violation-prone location extraction, we get 84
traffic violation-prone locations in Chengdu and 150 in
Xiamen. For 84 locations in Chengdu, 33 of them are from
Jinniu District. 29 of them are from Qingyang District. 6 of
them are from Jinjiang District, and 16 of them are from
Chenghua District. For 150 locations in Xiamen, 60 of them
are from Huli District. 86 of them are from Siming District,
and only 4 of them are from other districts.

Therefore, we focus on Jinniu District, Qingyang District
and Chenghua District in Chengdu, and Siming District
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and Huli District in Xiamen. For each traffic violation-
prone location, we aggregate its traffic violations hourly,
and determine its hourly violation level during working
hours (8:00-12:00 and 14:00-18:00). Finally, we get 18,720
instances in Chengdu (12,594, 5638, 488 for category 0, 1, 2,
respectively) and 35,040 instances in Xiamen (26,062, 7,664,
1,314 for category 0, 1, 2, respectively).

7.2.2 Traffic Violation Hotspot Inference
Traffic violation series contain sudden changes and are
influenced by spatiotemporal contexts, and the experiment
results (Table 2) show the effectiveness of using context-
awareness scheme to infer traffic violation hotspots. For
AGCRN method, it directly captures the correlations in
traffic violation series without the contextual features for
traffic forecasting. The STGCN and DCRNN methods take
the spatial contextual features of the nodes into considera-
tion, outperforming the AGCRN method. However, as for
the temporal features, they directly use the traffic violation
time series without temporal contextual factors. The deep-
learning-based methods (AGCRN, STGCN, and DCRNN)
are more suitable for forecasting time series with kind of
self-regularity attribution.

After incorporating the both of the spatial and temporal
contextual features, the CLarge method achieves good per-
formance on Dall

U using the large labeled dataset Dall
L , out-

performing STGCN, DCRNN, and AGCRN. Also, CLarge
is more efficient than STCGN, DCRNN, and AGCRN. It
cost 6.42 and 15.29 seconds to finish training in Chengdu
and Xiamen, respectively, while STGCN cost 108.22 and
180.83 seconds. DCRNN cost 42.59 and 54.89 minutes, and
AGCRN cost 47.48 and 50.76 seconds.

However, in practice, collecting such a training set is
time-consuming (the large labeled dataset is collected in
one month) and hinders the timely optimization for patrol
routes. Therefore, we further incorporate active learning
and tri-training into the model. According to observations,
the number of patrol teams for each district is around 10.
Therefore, we set the label ability of crowd as 10 every day
for every station. Since the CSTA model is updated every
week, the crowd for every district are going to label 70
instances in the ambiguous set A every week. Therefore, the
total number of labeling queries dealt with by crowd in each
active learning-based methods (including CSAL and CSTA)
are set to 840 and 560 from three districts in Chengdu and
two districts in Xiamen, respectively.

Based on the value of ε discussed above, we study the
F1-score of the CSTA method against various |D0

L| values.
As shown in Fig. 8, the initial training sets of size 1900 and
1100 are large enough to obtain the F1-score higher than 90%
in Chengdu and Xiamen, respectively. Therefore, we select
|D0

L| = 1900 for Chengdu and |D0
L| = 1100 for Xiamen

as the optimal initial training set sizes in the following
experiments. Therefore, in Chengdu, we select 1900 labels
from the first week of Dall

L as the initial label set, and limit
the total number of labels to 2740 for active-learning-based
methods. In Xiamen, we select 1100 labels from the first
week of Dall

L as the initial label set, and limit the total
number of labels to 1660 for active-learning-based methods.

As shown in Table 2, the CSmall baseline does not
perform well, especially in recall and F1-score, and the

(a) Chengdu. (b) Xiamen.

Fig. 8. Initial label size selection in Chengdu and Xiamen.

TABLE 2
Traffic violation hotspot inference results.

City Chengdu Xiamen

Methods P R F1 P R F1

STGCN [17] 0.819 0.812 0.815 0.889 0.885 0.887
DCRNN [18] 0.793 0.786 0.789 0.869 0.870 0.870
AGCRN [52] 0.772 0.858 0.806 0.775 0.900 0.821

CLarge 0.895 0.860 0.876 0.897 0.880 0.888
CSmall 0.849 0.790 0.814 0.872 0.736 0.785

CSAL 0.908 0.805 0.845 0.881 0.790 0.823
CSTT 0.870 0.825 0.845 0.883 0.793 0.830

CSTA 0.915 0.888 0.901 0.920 0.892 0.906
P is the precision, R is the recall, and F1 is the F1-Score.

CSAL and CSTT methods perform better than CSmall by
exploiting active learning and tri-training, respectively. The
proposed CSTA method further improves the performance
by combing active learning and tri-training, achieving an
F1-score of 0.901 with precision = 0.915 and recall = 0.888
using only 18.30% of labels in Chengdu, and achieving an
F1-score of 0.906 with precision = 0.920 and recall = 0.892
using only 5.92% of labels in Xiamen.

7.2.3 Patrol Route Optimization
We present the evaluation results on patrol route optimiza-
tion in Table 3. Based on observations, we set the number
of traffic routes for each police station as 10, set µ as 10×15
km for Siming and Qingyang Districts and as 10×10 km for
other districts. Besides, since the traffic police should move
from one node to another within 10 minutes and its average
speed is 60 km/h, the sub-route length threshold λ is set
to 10 km. The TILP+Bike method in Xiamen incorporate
the crowd tensor B calculated using the bike sharing data,
while the TILP does not take the voluntary participants
into account (all elements in B are set to 0). The evaluation
results are the average results of all patrol routes generated
in a month for each district. To eliminate the influence of
randomness in GRASP method, we repeat this baseline
method 100 times and get its average performance.

The GRASP method does not perform well in route
length (len), sub-route length (slen), and relative cover-
age ratio (covr). Among all methods without voluntary
participants, the DGS baseline method achieves the best
performance in covr, but it does not perform well in len
and slen, while the YEN baseline achieves the best per-
formance in len and slen but the worst in covr . Although
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TABLE 3
Patrol route optimization results.

District Chenghua (Chengdu) Qingyang (Chengdu) Jinniu (Chengdu) Siming (Xiamen) Huli (Xiamen)

Methods cov r len slen cov r len slen cov r len slen cov r len slen cov r len slen

GRASP [53] 48.87 16.53 9.42 28.19 20.60 8.99 27.01 17.88 13.87 15.60 36.67 19.65 22.43 25.03 17.29
DGS [54] 78.72 12.72 9.25 81.20 18.69 8.99 80.28 14.34 10.95 80.58 30.28 18.07 80.07 22.22 15.86
YEN [55] 16.51 3.49 1.78 0.47 11.14 5.59 1.42 0.91 0.46 5.43 2.43 1.49 18.25 4.00 2.00

TS-MOEA [56] 35.45 6.81 3.63 24.06 14.70 7.09 12.54 3.91 1.68 7.90 10.53 6.08 7.20 5.55 2.42
CCMO [57] 52.34 4.67 3.73 29.86 12.97 7.26 15.67 2.34 2.29 11.88 7.75 6.97 15.20 4.24 2.65

TILP 78.72 9.74 9.42 80.09 14.86 8.16 80.07 9.53 9.28 76.16 14.62 10.00 80.07 9.42 9.98
TILP+Bike - - - - - - - - - 87.37 14.95 9.92 85.67 9.93 8.71

the TS-MOEA method performs well in len and slen, it
achieves poorer covr than other methods except for YEN,
especially in Xiamen. The CCMO method outperform TS-
MOEA with higher covr and lower len and slen. However,
it emphasizes on minimizing route length with limited re-
sources, while the patrol route optimization emphasizes on
the effectiveness of patrolling with reasonable route length.
Compared with the CCMO method, the proposed TILP
method achieves much higher covr at the cost of increasing
route lengths within reasonable ranges, which is more prac-
tical in real-world application scenarios. Also, compared
with the DGS method, the proposed TILP method achieves
comparable relative coverage ratio while reduce the average
route length to 68.23% and 45.34% and reduce the sub-
route length to 91.56% and 59.13% in Chengdu and Xiamen,
respectively. Besides, since the lengths of overall routes and
sub-patrol routes are limited, the differences of travel time
among patrol teams would be limited, guaranteeing the
balance among patrol routes.

Furthermore, we take potential voluntary participants
into consideration in Xiamen (the TILP+Bike in Table 3).
The distance threshold τ of the spatiotemporal pattern ex-
traction for bike returning events is set to 100 meters, and
the probability of rejecting rejecting the patrol task prej is
set to 0.9. According to the experiment results, we can find
that through leveraging the crowd power, the TILP+Bike
achieves the best performance in relative coverage ratio.

7.2.4 Runtime Performance
We deployed our framework on a server with NVIDIA
GeForce GTX 1080 Ti 11GB and 32GB RAM. The framework
works in an online manner and is updated every week. In
Chengdu and Xiamen, it takes an average of 572.87 seconds
and 248.40 seconds to cluster one round of scattered traffic
violations into traffic violation-prone locations, an average
of 72.70 seconds and 554.06 seconds to update one round
of CSTA models, and an average of 0.61 seconds and 5.61
seconds to allocate one round of patrol tasks, respectively.
Therefore, the average time of processing new data collected
every week is about 10.77 minutes in Chengdu and 13.47
minutes in Xiamen.

7.3 Case Studies
We developed a real-world Traffic Violation Hotspot Pa-
trolling Information Service System9 as shown in Fig. 9,

9. https://research.spatial-crowdsensing.com/driving-violation/

Fig. 9. The developed Traffic Violation Hotspot Patrolling Information
Service System.

and conducted case studies on traffic violation hotspots in
Xiamen and Chengdu, respectively.

7.3.1 Traffic Violation Hotspots in Chengdu
Fig. 10a shows three traffic violation hotspots successfully
added to patrol routes by our framework in Chenghua
District, Jinniu District, and Qingyang District respectively.
The traffic violation hotspot in Chenghua District is the 2nd
Ring Road North 4th Segment between Jiefang Road and
Fuqing Road. This road segment has a speed limit of 60
km/h, while many drivers exceed the speed limit there,
and thus it requires attentions. The traffic violation hotspot
in Jinniu District is the road intersection of 1st Ring Road
and People North Road. This is a busy road intersection
near to a big shopping mall (Wanda Plaza), and thus a
lot of illegal parking behaviors happen there. Therefore it
is frequently added to patrol routes. The traffic violation
hotspot in Qingyang District is the road intersection of
Twelve Bridge Road and Xi’an South Road. The left turn
from Xi’an South Road to Twelve Bridge Road is not allowed
in this intersection, but many drivers still turn left there. We
even found a car was turning left in this intersection in the
street view picture.

7.3.2 Traffic Violation Hotspots in Xiamen
Fig. 10b shows two traffic violation hotspots successfully
added to patrol routes by our framework in Huli Dis-
trict and Siming District respectively. The traffic violation
hotspot in Huli District is a road segment of Jiahe Road be-
tween Hubin North Road and Songbai Road. Jiahe Road is
a main road across Xiamen Island, and this road segment of
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(a) Chenghua, Jinniu, and Qingyang Districts in Chengdu (b) Huli and siming Districts in Xiamen.

Fig. 10. The traffic violation hotspots frequently added to patrol routes.

Jiahe Road has a speed limit of 60 km/h. However, speeding
frequently happens on this road segment, and thus patrol
participants should pay more attention to this segment. The
traffic violation hotspot in Siming District is the intersection
of Zencuo’an West Road and Huandao South Road, which
is a busy road intersection near to the Haiyun campus of
Xiamen University, Xiamen Software Park, and a tourist
hotspot (Pearl Bay Beach). Illegal left turning behaviors from
Zencuo’an West Road to Huandao South Road frequently
happen in this intersection. Therefore, it is reasonable to add
this intersection to patrol routes.

8 DISCUSSION

We discuss the following limitations of our work.
(1) Updating Hotspots for Emergencies. The proposed

framework is adaptive to gradual trends of dynamic traffic
violation hotspots and design routine patrol routes accord-
ingly. However, it is currently unable to quickly respond for
emergencies. In real-world settings, road emergencies such
as traffic accidents are usually reported quickly to traffic
police. Therefore, in the future, in addition to the inferred
traffic violation hotspots, we can also update hotspots for
the crowd-reported emergencies in patrol route optimiza-
tion. More specifically, if an emergency occurs in the road
network, it can be directly assigned to the nearest patrol
participant so as to guarantee timely response, and then re-
optimize the sub-tensor of the adjacency tensorX represent-
ing the following patrol routes based on the current distri-
bution of patrol participants and traffic violation hotspots.
In this way, the framework can be adapted to emergencies.

(2) Designing Incentive Mechanism for Voluntary Par-
ticipants. Currently, the potential voluntary participants
for traffic violation hotspots is simply estimated leverag-
ing the spatiotemporal patterns of bike returning events
nearby. However, in real-world settings, the probability of
successfully recruiting crowd volunteers is influenced by
various factors such as weather conditions, rewards, and
participants’ profiles. For example, the crowd patrol ability
may decrease under appalling weather conditions, and the
crowd in residential districts may be more likely to receive
the crowdsensing tasks than those in business districts.
In the future, we plan to incorporate more impact factors
when building the crowd tensor B, and design a reward
mechanism to further encourage crowdsensing participants.

(3) Further Applications in Mobile Computing. The
proposed framework can be applied to various domains
other than transportation. For example, it be applied to
infer crowded nodes in the mobile network and schedule
edge devices to share the traffic in those crowded nodes
so as to increase the utility and service quality [58]. It can
also be applied to find specific spatiotemporal contexts with
high error risk for software and hardware and infer future
error hotspots, and schedule crowd intelligence to verify
the inferred hotspots. Besides, the framework is compatible
with many other application scenarios in cities, such as
crime area patrolling and public facility maintenance.

9 CONCLUSION

In this paper, we propose a mobile crowdsensing framework
for dynamic traffic violation hotspot inference and adaptive
patrol task scheduling. Specifically, we first extract traffic
violation events from heterogeneous crowd-sensed data,
and cluster them into traffic violation-prone locations with a
road network-based clustering algorithm. Then, we propose
a context-aware self-adaptive learning approach to infer
traffic violation hotspots. Finally, we find the patrol routes
with a maximal coverage ratio of traffic violation hotspots
under resource constraints by a proposed tensor-based inte-
ger linear programming modeling method. We evaluate our
framework using real-world datasets collected from Xiamen
and Chengdu. Results show that our framework accurately
infers traffic violation hotspots and generates patrol routes
adaptively, outperforming the baseline methods.

In the future, we intend to improve this work from
the following aspects. First, we plan to incorporate traffic
accident records, and collect more traffic violation data
leveraging crowdsensing platforms. Second, we plan to con-
sider more factors in patrol route optimization, for example,
the influence of incentives on patrol participants. Third, we
plan to evaluate our framework in more cities with different
geographic and meteorological conditions, and explore the
similarities and differences of relative spatiotemporal con-
textual features in different cities.

10 ACKNOWLEDGMENTS

We would like to thank the reviewers for their constructive
suggestions. This research is supported by NSF of China
No. 61802325, No. 62102349, No. 61872306, Fundamental

Authorized licensed use limited to: Xiamen University. Downloaded on September 20,2021 at 01:14:28 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3110592, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Research Funds for the Central Universities (20720200031),
and the Research Grants Council of the Hong Kong Special
Administrative Region, China under Grant No. C6030-18G.

REFERENCES

[1] G. Zhang, K. K. Yau, and G. Chen, “Risk factors associated with
traffic violations and accident severity in China,” Accident Analysis
& Prevention, vol. 59, pp. 18–25, 2013.

[2] M. O. o. O. New York City, “Vision Zero Year Five Report,” New
York, Tech. Rep., 2019.

[3] “World health organization: Road traffic injuries fact sheet,”
[EB/OL], https://www.who.int/news-room/fact-sheets/detail/
road-traffic-injuries Accessed April 29, 2020.

[4] G. DeAngelo and B. Hansen, “Life and death in the fast lane: Po-
lice enforcement and traffic fatalities,” American Economic Journal:
Economic Policy, vol. 6, no. 2, pp. 231–57, 2014.

[5] X. Chen, “Fast patrol route planning in dynamic environments,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 42, no. 4, pp. 894–904, 2012.

[6] D. Zhang, B. Guo, B. Li, and Z. Yu, “Extracting social and com-
munity intelligence from digital footprints: an emerging research
area,” in International Conference on Ubiquitous Intelligence and Com-
puting. Springer, 2010, pp. 4–18.

[7] Z. Jiang, L. Chen, B. Zhou, J. Huang, T. Xie, X. Fan, and C. Wang,
“itv: Inferring traffic violation-prone locations with vehicle trajec-
tories and road environment data,” IEEE Systems Journal, pp. 1–12,
2020.

[8] Y. Li, M. Abdel-Aty, J. Yuan, Z. Cheng, and J. Lu, “Analyzing traffic
violation behavior at urban intersections: A spatio-temporal kernel
density estimation approach using automated enforcement system
data,” Accident Analysis & Prevention, vol. 141, p. 105509, 2020.

[9] J. Gaoa and K. Ozbayb, “Hotspot identification, ranking and
impact estimation of illegal parking using spatial association and
queueing model,” 2020.

[10] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient
prediction-based user recruitment for mobile crowdsensing,” IEEE
Transactions on Mobile Computing, vol. 17, no. 1, pp. 16–28, 2017.

[11] B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu, and D. Zhang,
“Fliermeet: a mobile crowdsensing system for cross-space public
information reposting, tagging, and sharing,” IEEE Transactions on
Mobile Computing, vol. 14, no. 10, pp. 2020–2033, 2014.

[12] A. Farshad, M. K. Marina, and F. Garcia, “Urban wifi characteri-
zation via mobile crowdsensing,” in 2014 IEEE Network Operations
and Management Symposium (NOMS). IEEE, 2014, pp. 1–9.

[13] X. Li and D. W. Goldberg, “Toward a mobile crowdsensing system
for road surface assessment,” Computers, Environment and Urban
Systems, vol. 69, pp. 51–62, 2018.

[14] Z. Jiang, Y. Liu, X. Fan, C. Wang, J. Li, and L. Chen, “Understand-
ing urban structures and crowd dynamics leveraging large-scale
vehicle mobility data,” Frontiers of Computer Science, vol. 14, no. 5,
pp. 1–12, 2020.

[15] J. Hong, J. Park, G. Lee, and D. Park, “Endogenous commercial
driver’s traffic violations and freight truck-involved crashes on
mainlines of expressway,” Accident Analysis & Prevention, vol. 131,
pp. 327–335, 2019.

[16] E. Roidl, B. Frehse, and R. Höger, “Emotional states of drivers
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