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Abstract— Traffic violations have become one of the major
threats to urban transportation systems, undermining road safety
and causing economic losses. Although various methods have
been proposed by road authorities and researchers to find out the
possible causes of traffic violations, existing methods often fail to
diagnose traffic violations from drivers’ perspectives and contexts
or consider their visual and comprehension loads while driving.
In this work, we propose a driver-centered simulation platform
to inspect drivers’ loads in traffic violation hotspots. Specifically,
we first build a driving simulator based on the 3D point clouds
of real-world traffic violation hotspots. We then recruit drivers
to simulate driving in designated traffic scenes. Indicators for
drivers’ visual and comprehension loads are derived based on
drivers’ feedback. Upon this basis, we build an explainable model
to automatically indicate drivers’ visual and comprehension
loads under various crowd-sensed traffic scenes. Experiments
using real-world data from a Chinese City (Xiamen) and case
studies show that our approach successfully derives a set of
prominent indicators to effectively diagnose drivers’ visual and
comprehension loads in real-world traffic violation hotspots.

Index Terms— Traffic violation, crowdsensing, data analytics,
driving simulation.

I. INTRODUCTION
RAFFIC violations, such as marked lanes violations and
illegal turns, are one of the leading causes of traffic acci-
dents [1], undermining human safety and causing economic
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losses [2]. Therefore, it is important for urban authorities to
find out the possible causes of traffic violations in urban road
networks and implement corresponding strategies to alleviate
the traffic violation and accident problem.

There are various causes of traffic violations. Some vio-
lations are results of drivers’ intentional behaviors [3], such
as drunk driving and anger driving. Others are unintentional
and are usually caused by unfriendly traffic environments
(e.g., worn-out road markings and appalling weather con-
ditions) [4]. Unfriendly environmental factors significantly
increase drivers’ visual and comprehension loads [5], [6]
and thereby lead to accidental breaking of traffic rules or
regulations [7]. These high load-induced traffic violations are
usually observed in specific road intersections or segments
(i.e., traffic violation hotspots) during specific periods (i.e.,
traffic violation peaks). By understanding how environmental
factors add to drivers’ visual and comprehension loads in these
traffic violation hotspots, urban authorities can improve traffic
infrastructure accordingly to reduce the loads and ultimately
mitigate the unintentional traffic violation issue.

Traditionally, the possible visual and comprehension loads
of traffic violation hotspots are diagnosed by field studies of
inspectors [8]. However, field trips are usually labor-intensive
and time-consuming, and it is challenging to capture all
traffic and external environments relating to traffic violations
peaks [9]. As an alternative, researchers have proposed to
diagnose possible factors relevant to drivers’ loads from street
view imagery [10], dashboard traffic cameras [11], Automated
Enforcement System (AES) [12], etc. However, these methods
are incapable of restoring the complex traffic environments at
the time of traffic violation peaks (e.g., weather, illumination,
and vehicle density) and often fail to identify issues from
drivers’ perspectives and trajectories. Therefore, a comprehen-
sive and driver-centered approach to diagnose load-inducing
factors at traffic violation hotspots is in great need.

With the development of autonomous driving and
augmented reality, more and more vehicles and mobile
devices are equipped with Mobile Laser Scanning (MLS)
systems [13], making it possible to conduct widespread 3D
scanning and collect large-scale city-wide 3D LiDAR point
clouds [14]. By analyzing the point clouds, stereo views
of the scanned location can be restored [15], providing
researchers with new opportunities to understand the visual
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real-world deployment of the driving simulator.

and comprehension loads in given traffic environments.
For example, Zhang ef al. [16] presented a quantitative
visual recognizability evaluation method for traffic signs
based on traffic recognition theory and 3D LiDAR point
clouds. However, point clouds only contain the spatial
structure information of the scanned locations while lacking
contexts such as weather conditions and vehicle densities.
To reconstruct specific drivers’ contexts, we need to augment
the point clouds with contextual features.

Therefore, we first locate traffic violation hotspots and
restore violation-prone scenes based on crowd-sensed 3D point
clouds and contexts. Second, we build a driving simulator in
Virtual Reality (VR) (Fig. 1) for drivers to experience driving
in various traffic scenes modeled from real-world traffic viola-
tion hotspots. Based on drivers’ feedback, we derived a set of
indicators of drivers’ visual and comprehension loads related
to traffic violations, namely Blurred Signs&Markings, Worn-
out Markings, Occluded Signs, Overcrowded Signs, Incompat-
ible Signs, and Contradictory Signs&Markings. For example,
the traffic signs in Fig. 1(a) are overcrowded with redundant
information, increasing drivers’ comprehension loads (detailed
in Section V). Furthermore, we build a diagnosing model
based on the derived indicators to evaluate their effectiveness
and apply the model to real-world traffic scenes to inspect
the possible visual and comprehension loads experienced by
drivers. To this end, the following issues need to be addressed.

1) Restoration of Traffic violation-prone scenes. Traffic vio-
lations are distributed across the road network. To restore
traffic violation-prone scenes, it is essential to extract
violation hotspots and the peaks of violation incidents
at each hotspot. We first perform hotspot extraction on
traffic violation data using a density-based spatiotempo-
ral data clustering method. Second, we select the typical
traffic violation hotspots based on their spatiotemporal
characteristics and construct their structures with point
clouds. Third, we augment the typical traffic violation
hotspots with contexts derived from crowd-sensed data
and model the traffic violation-prone scenes.

2) Derivation of indicators for drivers’ visual and com-
prehension loads in traffic violation-prone scenes. To
understand drivers’ visual and comprehension loads in
violation-prone scenes, we build a driving simulator for

3)
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(b)

The structures of the driving simulator. (a) An illustration of the driving simulator implement and a traffic scene with overcrowded signs. (b) The

drivers to experience driving in various traffic scenes
and provide feedback on the perceived visual and com-
prehension demand. A hybrid approach of inductive and
deductive analysis [17] (Fig. 5) is used to derive indica-
tors for drivers’ visual and comprehension loads related
to traffic violations from drivers’ input and literature of
unfriendly environmental factors.

Diagnosing visual and comprehension loads in a new
traffic scene. It is labor-intensive and time-consuming to
recruit drivers to diagnose all traffic violation hotspots.
We build a diagnosing model based on the derived
indicators to automatically estimate drivers’ visual and
comprehension loads in traffic scenes. Specifically, road
marking and traffic sign detectors based on Computer
Vision are trained to identify these traffic infrastructural
elements in image-based traffic scenes. Scores of the
derived load indicators are calculated by a series of eval-
uators, and a classifier is trained to classify traffic scenes
into violation-prone and non-violation-prone scenes.

To summarize, the key contributions of this paper include:

To the best of our knowledge, this is the first work
on understanding drivers’ visual and comprehension
loads leveraging driving simulation and building a diag-
nosing model for traffic scenes accordingly. Such a
driver-centered framework can help urban authorities
better inspect risky factors in road networks and take
corresponding measures to alleviate the traffic violation
issue.

We propose a three-phase framework to diagnose the
drivers’ visual and comprehension loads in traffic scenes.
Our method can not only derive indicators of drivers’
visual and comprehension loads related to traffic vio-
lations effectively but also estimate loads in various
crowd-sensed traffic scenes automatically and systemati-
cally.

We implement the driving simulator and evaluate our
approach using real-world datasets from a Chinese City
(Xiamen). The results show that our approach success-
fully derives a set of prominent indicators to effectively
diagnose drivers’ visual and comprehension loads in
real-world traffic violation hotspots.
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TABLE I
DRIVER AND ENVIRONMENTAL FACTORS RELATED TO TRAFFIC VIOLATIONS

Intrinsic (e.g., age groups [18], education level [19], occupation [19], personality [20], distractibility [21])

Driver Extrinsic (e.g., fatigue symptom [22], emotional states [23], alcohol [24], drugs [25], mobile phone interaction [26])
Environ-  Weather (e.g., foggy, rainy, snowy, dust) [27]-[29], Illumination (e.g., nighttime driving) [4], [30], Vehicle Density (e.g., traffic congestion) [31]
mental Traffic Facility (e.g., compatibility, familiarity, standardization, simplicity, semantic distance, meaningfulness, concreteness) [32]

II. RELATED WORK

This section introduces the traffic violations and then
reviews the works on factors leading to traffic violations.
We divide these factors into driver factors and environmental
factors (TABLE I) and elaborate on environmental factors
which tend to form traffic violation hotspots. We further
discuss the existing works on the relationships between envi-
ronmental factors and drivers’ workload and the measurement
of drivers’ workload. Finally, we discuss the existing works
on mobile laser scanning and driving simulators.

A. Traffic Violations

Road traffic injuries have a significant impact on health and
development [33]. There have been numerous works for pro-
moting road safety in the literature. Some researchers worked
on reducing in-vehicle risks, such as increasing the reliability
of the controller area network in buses [34] and deploying
driving assistance applications for drivers [35]. Others tried
to improve traffic environments, such as countermeasures to
reduce yellow-light running in dilemma zone [36]. As one of
the major results of risky in-vehicle behaviors and unfriendly
traffic environments, traffic violations have received extensive
attention in both industry and academia.

The widespread traffic violation monitoring technologies,
such as surveillance cameras and speed enforcement cameras,
make it possible to collect a large amount of traffic violation
data [37]. Also, many traffic violation crowdsensing platforms
have been developed, making traffic violation reporting easier.
These large-scale city-wide traffic violation data provide us
with unprecedented opportunities to look into their causes.

B. Factors Related to Traffic Violations

Many studies have been conducted to identify the factors
leading to traffic violations. Based on the literature review,
we divide these factors into driver factors and environmental
factors, as shown in TABLE I. Driver factors are drivers’
characteristics related to traffic violation behaviors. Some are
drivers’ intrinsic characteristics, such as drivers’ age, person-
alities [20], distractibility [21], education levels, and occupa-
tions [19]. Others are extrinsic characteristics, such as fatigue
symptom [22], emotional states [23], alcohol and drug [24],
[25], and drivers’ interaction with mobile phones [26].

Environmental factors are characteristics of traffic environ-
ments. Unlike traffic violations induced by driver factors that
are usually isolated and incidental, those induced by unfriendly
environmental factors tend to form traffic violation hotspots
and can be prevented by improving traffic environments.

The environmental factors can influence drivers’ visibility
and comprehension loads and thereby influence their driving
behaviors [5], [6]. We divide the potential environmental

factors into four categories (TABLE I). Weather conditions
show a significant influence on drivers’ visual loads [27], [29].
Nighttime driving increases drivers’ visual loads [4]. As for
the vehicle density, researchers have different conclusions. For
example, Shinar [31] claimed that traffic congestion increases
driver aggression and thus increases the risks of traffic viola-
tions and accidents, while Lajunen er al. [38] suggested that
congestion does not increase driver aggression directly. The
conditions of traffic facilities also play an essential role.
Many works studied the relationships between the design
features of traffic facilities (e.g., familiarity, concreteness,
complexity, meaningfulness, and semantic distance [32]) and
their visibility and comprehensibility. Carlson [39] investi-
gated the effects of the brightness of traffic signs on their
visibility. Kersavage et al. [40] evaluated the effectiveness of
using different wording, text, background colors, and types of
information on the visibility and comprehensibility of signs.

C. Relationships Between Environmental Factors and
Drivers’ Workload

Unfriendly traffic environmental factors increase drivers’
workload [5], [6], making drivers prone to breaking traffic
rules or regulations accidentally there [7] and leading to
traffic violation hotspots. The modeling of drivers’ work-
load has been widely studied. Some works simulated the
mechanism of human information processors and proposed
computational models (e.g., queuing network model [41] and
neural network [42]) to estimate drivers’ workload and perfor-
mance. However, these works lack the analysis of relationships
between specific environmental factors and traffic violations.

Besides, some works estimate drivers’ workload directly
based on drivers’ physiological data and vehicle states influ-
enced by driving environments. For example, Kim et al. [43]
analyze the electroencephalogram data collected through an
urban road driving test to explain the cognitive workload
characteristics of different driving sections. Xing et al. [44]
estimated workload using a support vector regression model
based on the physiological data collected from drivers and
vehicle speed and position data. Based on drivers’ physiologi-
cal data, vehicle signals, and traffic contexts, in [45] and [46],
deep learning architectures were developed to assess drivers’
workload. Noh et al. [47] proposed a framework to generate
personalized driver workload profiles using physiological and
operational data. However, these works mainly emphasize
individuals. They are good at measuring workloads with
physiological data collected from different drivers rather than
directly assessing workloads for traffic scenes without drivers.

On the other hand, some works studied the relationship
between traffic environment factors and drivers” workload. For
example, in [48], researchers found that the mental workload
of drivers increased with an increase in other heavy goods
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vehicles. Precht et al. [27] reviewed the effects of various
weather conditions on drivers’ workload. Yared et al. [49]
found that nighttime driving creates a high perceived work-
load. However, these works mainly focus on several specific
conditions. Although they quantified the environmental factors
and established the relationship between these factors and
drivers’ workload, they are not able to directly estimate traffic
violation risks for traffic scenes quantitatively.

D. Drivers’ Visual and Comprehension Loads

Drivers’ workload (e.g., cognitive and visual loads) is
usually measured by physiological data and rating scales.
For example, various strategies, such as empirical techniques,
rating scales, and psycho-physiological, are used to determine
the cognitive load. The visual load is usually quantified using
eye movement measures, and higher visual demands lead
to reduced speed and increased lane-keeping variation [50].
Based on the literature review, we can find that the increas-
ing cognitive load usually leads to decreasing comprehen-
sibility [51], and reducing the visual load can improve the
visibility [50].

However, cognitive load is usually measured from the
perspective of drivers’ factors. To build a diagnosing model
which can automatically figure out unfriendly environmental
factors in traffic scenes, it is critical to reduce the influence of
drivers’ factors and measure the drivers’ workload from the
perspective of environmental factors.

Therefore, in this paper, inspired by the cognitive load
theory, we define the difficulty of understanding the meaning
of traffic facilities as the comprehension load. We use the
comprehension load to describe the cognitive load added to
drivers while comprehending traffic facilities. In this way,
we infer drivers’ comprehension and visual loads based on
the comprehensibility and visibility of traffic facilities in traffic
scenes, and thus directly assess violation risks of traffic scenes.
Also, this kind of measurement is much easier to implement,
minimizing the possible interference during driving.

E. Mobile Laser Scanning

Mobile Laser Scanning (MLS) collects geospatial data from
vehicles and mobile devices fitted with LiDAR, cameras,
and other remote sensors [52]. It can rapidly collect accu-
rate and reliable 3D point clouds to represent 3D shapes
or objects [53] and has been widely used in Autonomous
Driving [14], Augmented Reality [54], etc. In recent years,
more and more vehicles and mobile devices (e.g., iPad Pro and
iPhone Pro [55]) are equipped with MLS systems, facilitating
the collection of large-scale 3D point clouds [14].

By processing point clouds, stereo views of the urban traffic
environment can be restored [16], providing researchers with
new opportunities to understand drivers’ visual and compre-
hension loads. For example, Zhang er al. [16] presented a
quantitative visual recognizability evaluation method for traffic
signs based on traffic recognition theory and 3D LiDAR point
clouds. Takeuchi et al. [56] proposed a fast lane visibility
check method using a high-density point cloud map. However,
point clouds only contain the spatial structure information of
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the scanned locations [57] while lacking contextual features.
Therefore, we use point clouds to reconstruct traffic violation
hotspots, and augment their contexts with vehicle density,
weather, and illumination features.

F. Driving Simulation Environments

Driving simulation has been used in various scenarios, such
as driving training [58], commercial games [59], and driving
performance studies [60]. There are many existing driving
simulators. Some simulators are based on virtual labs. For
example, Dosovitskiy et al. [61] provided open digital assets
to support autonomous driving. STISIM! provides professional
driving simulation for occupational therapy, driving research,
and driver training. OpenDS? is an open-source driving sim-
ulator with configurable vehicles and an informative GUI.
The virtual lab-based simulators are more flexible and can be
customized. However, although some driving simulators, such
as NADS [62], can provide high-fidelity driving environments,
they require specialized equipment and are inaccessible to the
general public. Besides, they usually have limited scenarios.
The contents are usually created from scratch by digital artists,
unable to directly generate scenes based on real-world data and
fail to simulate the complex natural urban traffic environments.

Other simulators work on roads. For example,
Baltodano et al. [63] introduced a real road autonomous
driving simulator. Wang et al. [64] studied on-road partial and
fully autonomous driving interaction with a driving simulator
in commercial passenger vehicles. Goedicke et al. [65]
developed tools to enable VR driving simulation in a vehicle as
it travels on the road. However, although these simulators have
natural driving environments, they require much more labor
and time than the virtual lab-based and have inherent risks.

Therefore, we build the driving simulator based on the
highly accurate point clouds collected from real-world traffic
scenes directly so that it can simulate complex urban traffic
environments with high fidelity and flexibility. The VR driving
simulator can provide users with immersive driving experi-
ences and significantly reduce costs.

III. PRELIMINARIES AND FRAMEWORK

Definition 1 (Traffic Violation Hotspot and Peak): A traffic
violation hotspot refers to a location with more traffic vio-
lations than others. Traffic violation peaks are the peaks of
the time distribution of traffic violations in traffic violation
hotspots.

Definition 2 (Traffic Scenes): Traffic scenes are vehicles’
surroundings from the perspective of vehicles [66]. Real-world
crowd-sensed traffic scenes are traffic scenes taken by the
crowd in the real world (e.g., photos of road environments
taken by dashcams or passengers).

Definition 3 (Traffic Facilities): Traffic facilities include traf-
fic signs, road markings (e.g., lane markings, arrow markings,
etc.), and other pieces of equipment that are used to control,
regulate, and guide traffic. This paper mainly focuses on traffic
signs, lane markings, and arrow markings.

1 https://stisimdrive.com/
Zhttps://opends.dfki.de/

Authorized licensed use limited to: Xiamen University. Downloaded on October 06,2022 at 05:30:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: UNDERSTANDING DRIVERS’ VISUAL AND COMPREHENSION LOADS 5

Base
Station 1,

Base
Station 2

1 bt

Point Clouds

| | Violation Hotspots

1
i
|
| Computer/' g Q

. e VR Headset, |

Typical Traffic Crowd-Sensed | ! & Steefing
13
¥
|

B f
/" Driver pegals

Wheel

______________________________

Driving Simulator

| o |

Coding

Indicators

+ |Inductive-Deductive

Traffic Violation Hotspot
Modeling

Fig. 2. Framework overview.

Definition 4 (Point Clouds and Mobile Laser Scanning):
Point clouds are a collection of data points representing a
3D object and usually generated by 3D laser scanning or
photogrammetric approaches [53]. Mobile Laser Scanning
(MLS) allows the collection of accurate 3D point clouds using
laser systems mounted on vehicles and mobile devices fitted
with LiDAR, cameras, and other remote sensors [53].

Definition 5 (Visual and Comprehension Loads): Visual load
refers to the difficulty of perceiving objects [S0]. We use
the visual load to describe the load added to drivers while
trying to see traffic facilities clearly in traffic scenes, reflecting
the visibility of traffic facilities. Inspired by the cognitive
load theory [67], we define comprehension load as the dif-
ficulty of understanding the meaning of objects. We use the
comprehension load to describe the cognitive load added to
drivers while comprehending traffic facilities, which reflects
the comprehensibility of traffic facilities.

We propose a three-phase framework to diagnose the
drivers’ visual and comprehension loads related to traffic
violations (Fig. 2). First, we extract hotspots from traffic
violations and select typical hotspots to collect their point
clouds and augment their contexts. Then, we build a driving
simulator, recruit drivers to experience driving in typical
traffic violation-prone scenes using the simulator, and derive
indicators for drivers’ visual and comprehension loads based
on analyzing the drivers’ feedback. Based on the indicators,
we build a model to automatically estimate drivers’ visual and
comprehension loads in traffic scenes.

IV. CROWD-BASED TRAFFIC VIOLATION
HOTSPOT MODELING

In this phase, our goal is to model traffic violation hotspots
leveraging heterogeneous crowd-sensed data. First, we extract
traffic violation hotspots from traffic violation data leveraging
a density-based spatial-temporal data clustering method. Then,
we select typical traffic violation hotspots and reconstruct their
spatial structures by their 3D point clouds. After that, we aug-
ment the hotspots using contextual features. We elaborate on
the details of our approach as follows.

A. Traffic Violation Hotspot Extraction

We first extract traffic violation peaks from scattered traffic
violations. For each traffic violation p, its location is denoted

Scene-Based Visual and
: Comprehension Load Study :

Load Diagnosing for Traffic
Scenes

by y (a road or road intersection). We aggregate traffic
violations with the same locations (i.e., the same roads or
road intersections) and thereby get a set of locations I, i.e.,
I' =1UR = {y1,72,...,yn}, 7i = (i, P),1 <i <N,
where I, R, i, P;, and N are the set of road intersections with
traffic violations, the set of roads with traffic violations, the
ID of road intersections or roads, the set of traffic violations
in the road or road intersection i, and the number of road
intersections or roads, respectively. Specifically, for some long
roads, we need to extract road segments with frequent traffic
violations from them. Besides, since the time distribution of
traffic violations in the same road intersection or segment is
uneven, we also need to extract periods with frequent traffic
violations from the continuous time. To this end, for each
location y; € I' (1 <i < N), we cluster its traffic violations
into different clusters with a density-based spatiotemporal
data clustering method, ST-DBSCAN [68]. ST-DBSCAN can
discover clusters according to non-spatial and spatiotemporal
values of objects, which is very suitable for traffic violation
extraction. After clustering, the scattered traffic violations are
clustered into traffic violation peaks.

After getting the set of traffic violation peaks A, we first
initialize the set of traffic violation hotspots H with A. Then,
we get the closest distance of sets in H, denoted as din
and if d,;;, is smaller than J,, the closest pair of sets are
combined as one set. The closes pair of sets are iteratively
combined until the d,,;, is no smaller than J,. Note that the
distance between two sets are determined by the geographic
distance of the average longitude/latitude in each set. Finally,
we remove the sets whose size (the number of peaks) is smaller
than J; from H, and get a set of traffic violation hotspots H,
and for each hotspot h; € H, it consists of traffic violation
peaks in this location, i.e., H = {hy, ha, ..., hg}, where K
is the number of traffic violation hotspots extracted, Vi, j €
[1,K],i # j,hiNhj =0, and (hy Uho U...Uhg) C A.

B. Hotspot Structure Construction

After extracting the traffic violation hotspot, our next step
is to construct their spatial structures using their point clouds.
We build a Point Cloud Crowdsensing Platform to collect their
point clouds. As shown in Fig. 3, MLS providers (detailed in
Appendix III) upload the point clouds of traffic environments
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Mobile Laser Scanning Map

(a) MLS Providers

Fig. 3. The point cloud Crowdsensing platform.

to the crowdsensing platform. We can view the collected point
clouds on the platform.

Since investigating all traffic violation hotspots requires
rather high costs, we classify traffic violation hotspots based on
their spatiotemporal contexts and select typical traffic violation
hotspots from them. More specifically, in terms of time,
we divide the time into 7' hours, and for each hotspot h; € H
(i € [1, K1), we represent its traffic violation peak distribution
using a T-dimensional 0-1 vector v;, where the j'" entry is set
to one if the j** hour is in a traffic violation peak. We form
the traffic violation hotspots as a weighted graph whose nodes
are hotspots and weights of edges are the Euclidean Distance
Similarity between two nodes (hotspots). A hierarchical
clustering algorithm, Louvain algorithm [69], is used to
divide traffic violation hotspots into different communities.

In terms of space, we assign traffic violation hotspots to
different urban functional areas based on their Points of Inter-
est (POIs) features [70]. We divide POlIs into five categories,
i.e., business, accommodation, entertainment, infrastructure,
and tourism. We count the number of POIs for each category
and build the POI features for each hotspot, i.e., ®(h;) =
[01, 02, 03,04, 05], where 0 < 01, 02, 03,04,05 < 1 are the
ratios of business, accommodation, entertainment, infrastruc-
ture, and tourism POIs to all POIs for hotspot 4;, Z?:l 0; =
1. Then we build five core POI features corresponding to
business, accommodation, entertainment, infrastructure, and
tourism, respectively. For core feature ®r(1 < k < 5),
oj = 1(j = k),0;j = 0(j # k). We assign each traffic
violation hotspot to one of the five spatial categories whose
core feature has the closest Euclidean distance to them.

Finally, for each pair of temporal category and spatial
category, if there exist traffic violation hotspots, we look up
the point cloud crowdsensing platform to get, if any, point
clouds of one traffic violation hotspot, and process the point
clouds by removing the outliers and filtering out interferences
such as pedestrians and vehicles to get the spatial structures.

C. Hotspot Context Augmentation

Our next step is to augment the typical traffic violation
hotspots. Based on the literature review (TABLE I), we aug-
ment the following contextual features for traffic violation
peaks in each typical traffic violation hotspot.

o Vehicle Density is estimated by the Baidu Traffic Con-
gestion Index (TCI), which is open-access and has been
used in many Chinese cities for years [71]. The vehicle
density of each traffic violation peak is divided into

(b) Point Cloud Crowdsensing Platform

(c) Point Clouds

four categories, i.e., smooth, slight, moderate, and severe
(detailed in Appendix I).

o Weather. We retrieve the weather conditions using the
Weather Underground API® and Chinese Meteorological
Big Data Platform,* and divide weather conditions into
six categories, {cloudy, rainy, snow, fog, dust, sunny}.
Furthermore, for category rainy, snow, fog, dust, and
cloudy, they are further divided into four categories
{Light, Moderate, Heavy, Violent} according to China
Meteorological Bureau (detailed in Appendix II).

o INlumination. Since weather conditions influence the
illumination and we have considered weather conditions,
we classify the illumination conditions into daytime
driving and nighttime driving.

D. Evaluation

1) Datasets: The traffic violation data used in this paper
are provided by Xiamen Transportation Bureau, collected from
March 2017 to February 2018 by traffic enforcement systems,
traffic police, and crowd reporting, including 651 traffic sign
violations, 74,921 road marking violations, 1,473 illegal park-
ing, 698 speeding violations, and 1,283 other violations such
as overtaking and not yielding to pedestrians, all committed by
car users. The road network includes Xiamen City. As shown
in Fig. 4(g), part of Xiamen City is connected to the mainland,
and the other part is an island. We can find that traffic
violations are unevenly distributed across the time and space
(Fig. 4(a)(b)(c)(g)).

2) Results: Based on the traffic violation data, we extracted
9,539 traffic violation peaks, and they are clustered into
68 traffic violation hotspots. The POI distribution around the
hotspots is shown in Fig. 4(d). These hotspots were classified
into five spatial categories based on their POI distribution,
and classified into three temporal categories based on their
traffic violation peak distributions. For each pair of temporal
category and spatial category, we select one traffic violation
hotspot whose point clouds have been collected. If there exists
no available hotspot, we skip this pair of categories. If there
exist more than one available hotspot, we randomly select
one of them. Finally, we obtained eight typical hotspots. The
weather distribution of all data collection periods and with
traffic violation peaks in typical hotspots is shown in Fig. 4(e).
The distribution of vehicle density of traffic violation peaks in
typical hotspots are shown in Fig. 4(f).

3https://www.wunderground.com/weather/api/
4http://wwwweatherdt.com
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Fig. 4. The overview of datasets and results. (a) The average traffic violations
in a day. (b) The average traffic violations across different months. (c¢) The
average traffic violations across different seasons. (d) The POI distribution of
traffic violation hotspots. (e) The weather distribution of all data collection
period and with traffic violation peaks in typical hotspots. (f) The distribution
of vehicle density of traffic violation peaks in typical hotspots. (g) The heat
map of traffic violations.

V. SCENE-BASED VISUAL AND COMPREHENSION
LOAD STUDY

In this section, a hybrid approach of inductive and deductive
analysis is used to derive load indicators related to traffic viola-
tion from drivers’ input. As shown in Fig. 5, we first model the
traffic violation-prone scenes and build a driving simulator to
conduct driving simulation experiments (I). We derive a set of
reasons for traffic violations and unfriendly elements through
interviews. We further model the experimental traffic scenes
with unfriendly elements improved and recruit 70 drivers
to conduct driving simulation experiments (II) and score
their visual and comprehension loads with questionnaires.
The experiments are within-subject designed to decrease the
influence of individual differences and increase the probability
of finding the differences between the control scene and exper-
imental scene with fewer participants [72]. Finally, we conduct
statistical analysis to derive load indicators.

A. Driving Simulator Development

We develop a VR driving simulator to conduct driving
simulation experiments, as shown in Fig. 1(a).

1) Traffic Violation-Prone Scene Modeling: To model the
traffic violation-prone scenes, we first extract contextual fea-
tures significantly related to violation peaks in typical hotspots
selected. Two T-dimensional 0-1 vectors v and f represent
the traffic violation peak distribution and contextual features
for each typical hotspot. For example, for sunny weather,
if the j'" hour is sunny, the j* entry of f is set to one,
and otherwise set to zero. For other features, f is set in

TABLE II

THE SIGNIFICANT CONTEXTUAL FEATURES (SIG. FEATURES) AND IDs
OF NINE TRAFFIC VIOLATION-PRONE SCENES MODELED FROM EIGHT
TRAFFIC VIOLATION HOTSPOTS IN XIAMEN

Scene ID (Hotspot ID) Sig. Features

S1 (H1) Heavy Rain
S2 (HI) Light Fog
S3 (H2) Moderate Congestion
S4 (H3) Nighttime
S5 (H4), S6 (H5), S7 (H6),S8 (H7), S9 (H8) None

a similar way. Then, we conduct the Chi-Square tests [73]
based on the contingency table displaying the joint frequencies
of values to evaluate whether the variables are associated or
independent. For the 8 typical hotspots, we modeled 9 traffic
violation-prone scenes based on their significant contextual
features (TABLE II). Specifically, if the violation peaks in a
traffic violation hotspot are significantly related to more than
one feature, we would model more than one scene accordingly,
such as S1 and S2 for HI.

In each hotspot, if some types of contextual features are
not significantly related to its violation peaks, such as Vehicle
Density and Illumination in H1, these types of features in the
modeled scenes are set to the most friendly conditions based
on the literature review. For example, in S1 and S2, the vehicle
density is set to smooth and the illumination condition is set
to daytime driving. For hotspots without significant contextual
features, we set all conditions in their traffic violation-prone
scenes as the most friendly ones. All traffic scenes modeled in
this paper can be found in Appendix VII. The software part of
the driving simulator is developed using the Unity 3D Engine.

2) Hardware Components:

« VR Headset and Base Stations. The VR Headset and
base stations are from HTC Vive Virtual Reality Sys-
tem,® with which drivers can experience driving using
controllers and headset tracking with realistic graphics,
directional audio, and HD haptic feedback [74]. To make
the driving experience more realistic, we replaced the
controllers by the steering wheel and car pedals.

o Computer. The computer is with Intel Core
i5-6500 CPU, 16GB RAM, and Nvidia GeForce
GTX1080Ti 11G. Three screen monitors are used to

help observe the drivers’ behaviors.

o Steering Wheel and Car Pedals. The steering wheel
and car pedals are PXN-V3IL7 The wheel has 180-degree
rotation and a realistic wheel design, and the pedals are
with gas and braking control.

« Environments. We deploy the simulator in a quiet room,
as shown in Fig. 1(b).

B. Driving Simulation Experiments |

1) Participants: In driving simulation experiments I,
we recruit 12 drivers (6 males and 6 females) Their ages range
from 23 to 24 (M = 23.7, SD = 0.471). Their years of driving
experiences range from 1 to 5 years (M = 2.58, SD = 1.26).

3 https://unity.com/
6https J/Iwww.vive.com/eu/
7 http://www.e-pxn.com/
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Fig. 6.

Half of them are local residents relatively familiar with the
typical traffic violation hotspots, and the other half are non-
local. Their detailed information can be found in Appendix IV.

2) Experiment Settings: In the experimental room, a partici-
pant sits in the seat and wears a VR headset through which the
participant sees himself/herself sitting in the seat of a virtual
car (Fig. 6). Before driving, the participant would practice
controlling the virtual car using the steering wheel and pedals
with our instructions. In each traffic violation-prone scene,
the start points for participants are fixed, while the endpoints
depend on their driving behaviors. The domain of the scene
is limited to guarantee that the participant would drive across
the traffic violation hotspot and finish driving in 10 seconds.

Upon finishing driving in a scene, if the participant violated
traffic rules, we would ask about the possible reasons for the
violation. Otherwise, we would inquire about what factors
in this scene are unfriendly to driving. Then, the participant
would proceed to the next scene until all scenes have been
experienced. The order of scenes is random. The participant
would take a break for 15 minutes after completing five scenes
and then resume to finish the remaining scenes.

3) Experiment Results: Three authors conducted reflexive
thematic analysis on the text of interviews with drivers follow-
ing the guidelines of [75], detailed in Appendix VI. In general,
three authors first read through the text independently to get
familiar with the data. Second, the authors coded the data by
extracting key phrases or sentences in an inductive manner,
during which authors discussed and compared their codes to
refine the codes. Then, the authors reviewed the codes together
and discussed the code importance and relationships among
codes to generate key themes. After reviewing the themes by
all authors, we named and defined the following six key factors
related to drivers’ traffic violation behaviors.

View of participants sitting in the simulated car. Note that the enlarged traffic sign is not in the view.

a) Blurred signs&markings: Many participants violated
traffic rules (5/12) because they failed to see traffic signs and
Markings clearly. In S1, all participants claimed that the heavy
rain added to their burden when trying to recognize the traffic
signs. In S2, fog weather influenced the visibility of traffic
signs, making drivers more likely to violate traffic rules (7/12
participants complained about the fog). In S4 where traffic
violation peaks usually happened during nighttime, most of
the participants (9/12) claimed that the illumination there is
insufficient and the no-left-turn sign is not very obvious. Two
participants turned left illegally there.

b) Worn-out markings: Some road lanes are seriously
worn-out, leading to marked lanes violations. For example,
in S7, participants (5/12) complained that the solid road line
had faded, making it look like a skip line. Drivers are thereby
very likely to make a marked lanes violation there.

c) Occluded signs: Some traffic signs are occluded by
trees or other objects, making it difficult for drivers to notice
traffic signs quickly or see them clearly. In S5, drivers can
only make a U-turn on the far left lane, and there is a U-turn
sign on the left for a reminder. However, some participants
(3/12) complained that the roadside trees covered the U-turn
sign and they did not notice it when they drove through fast.
Although some participants (6/12) did not violate the traffic
rule there, they still complained about it.

d) Overcrowded signs: It is difficult for drivers to timely
recognize too many traffic signs in a traffic scene. In S3,
four non-local participants complained that there are too many
traffic signs, and some have similar meanings. Different from
previous studies [31] but consistent with [38], although 8 par-
ticipants expressed annoyance about the high vehicle density
in S3, none of them thought it would lead to traffic violations.
No traffic violation was committed in the experiments.
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e) Incompatible signs: Signs are incompatible means that
their physical arrangement in space is unrelated to or even
opposite the information or directions conveyed. Although the
traffic sign and road markings in S6 are in good condition
and visually apparent, the design of the traffic sign is spatially
incompatible. Three non-local participants pointed out the
confusing arrangement of elements in the traffic sign. The text
“Island Ring South Road” is on the left of the sign, and the
text “Island Ring Main Road” is on the right of the sign (see
the enlarged traffic sign in Fig. 6). Drivers may intuitively
think the left road is “Island Ring South Road” and the right
road is “Island Ring Main Road”. However, according to the
arrows, the “Island Ring South Road” is the road on the right,
and the “Island Ring Main Road” is on the left. Drivers new to
this area are prone to make mistakes, especially when driving
at high speed. After realizing they are driving on the wrong
side, they are likely to cross the solid lines to change lanes
at the last minute. Even two local participants said they were
unsatisfied with this sign and had made mistakes there before.

f) Contradictory signs&markings: Unlike the Incompat-
ible Signs, signs&markings are contradictory means that the
information conveyed by these signs or markings is contradic-
tory. For example, in S8, there is a no-left-turn sign, while
the road is painted with a dashed line on the left side of
the lane, meaning that drivers can turn left there. Four out
of 12 participants pointed out that they were unsure whether
they could turn left or not there. Similarly, eleven participants
reported that the new road marking coexisted with the old one
in S9, making people prone to drive in the wrong lane.

C. Experimental Traffic Scene Modeling

For each factor, we model the experimental scenes
(Appendix VII) for comparison, detailed as follows.

o Blurred Signs&Markings. Scene S1 has poor clarity.
We change its weather condition into sunny to model
S1.1 (experimental scene) with good clarity.

o Worn-out Markings. The lane marking in scene S7 has
been worn out, and in the corresponding experimental
scene, we repaint the worn-out solid line to model S7.1.

e Occluded Signs. In S5, the traffic sign is covered by
roadside trees, and in the corresponding experimental
scene, we remove the trees before the traffic signs to
model scene S5.1.

o Overcrowded Signs. In S3, Since many participants
complained about the high vehicle density but did not
think it was related to traffic violations, we change
the vehicle density to smooth to eliminate its influence
(S3.1). We remove signs with redundant information in
the corresponding experimental scene (S3.2).

o Incompatible Signs. Corresponding to S6 with incom-
patible traffic signs, we change the traffic signs to make
them more spatially compatible to model S6.1.

« Contradictory Signs&Markings. Scene S8 has contrary
traffic facilities, and we change the dashed line into a
solid line to model S8.1.

D. Driving Simulation Experiments 11

We conduct comparative experiments to explore the rela-
tionships between the six unfriendly environmental factors

concluded above and drivers’ visual and comprehension
loads.

1) Participants:  We recruit 70 drivers (29 males,
41 females) with diverse education backgrounds (21
have education levels below university, and 49 are with
university education or above). Participants’ ages ranged
from 23 to 62 years old (M = 36.9, SD = 12.1). Their years
of driving experience ranged from 1 to 38 years (M = 7.89,
SD = 6.52). Among the participants, 43 are local people
familiar with the experimental traffic violation hotspots, and
27 are non-local with little knowledge about the hotspots.
The detailed information can be found in Appendix V.

2) Experiment Settings: Every time participants finish
driving in a scene, traffic violations would be recorded. Partic-
ipants would rate their Visual Load and Comprehension Load
on a 5-point Likert scale (1 strongly disagree - 5 strongly
agree) questionnaire as follows. Other settings and procedures
are the same as the driving simulation experiments I.

o It is difficult for me to see traffic signs/road markings in
the scene clearly while driving.

o It is difficult for me to understand the meaning of traffic
signs/road markings in the scene while driving.

3) Experiment Results: The detailed experiment results can
be found in Appendix V. We conduct statistical analysis on
the experiment results, as shown in TABLE III.

Based on the results, we find that participants com-
mit fewer traffic violations in experimental scenes (with
unfriendly environmental factors improved) than in control
scenes (with unfriendly environmental factors). The Blurred
Signs&Markings caused by environmental conditions (e.g.,
bad weather or low illumination) indicate an increase in
drivers’ visual load for detecting traffic signs. The Worn-out
Markings indicate a higher visual load for road markings. The
Occluded Signs add to drivers’ visual load for traffic signs,
depending on the extent to which the signs have been blocked
by other objects, such as roadside trees, telegraph poles, and
other traffic signs. The Overcrowded Signs increase drivers’
comprehension load for differentiating relevant traffic signs,
which is influenced by the number of traffic signs in a traffic
scene, especially for drivers unfamiliar with the road. The
Incompatible Signs indicate a higher drivers’ comprehension
load for traffic signs. The Contradictory Signs&Markings indi-
cate a greater demand for drivers’ comprehension resources as
they may confuse drivers.

We further conduct Wilcoxon Signed Ranks Test [76] for
statistical significance. The results are shown in TABLE III,
we find the Blurred Signs&Markings, Worn-out Markings,
Occluded Signs are significantly related to the visual and
comprehension loads. If a scene had poor visibility, its compre-
hensibility would be impaired since people often have trouble
making sense of things that they could hardly see, leading to
both high visual and comprehension loads. The Contradictory
Signs&Markings, Incompatible Signs, and Overcrowded Signs
are significantly related to comprehension load but not signif-
icantly related to visual load. Based on the above discussion,
we derive six indicators for drivers’ visual and comprehension
loads related to traffic violations, as shown in TABLE IV.
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TABLE III

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

THE STATISTICAL ANALYSIS RESULTS FOR DRIVING SIMULATION EXPERIMENTS II (70 PARTICIPANTS)

Scene (Violations) ‘ Clear S1.1 (12) Blurred S1 (31) Z (p) ‘ Normal S7.1 (3) Worn-out S7 (25) Z (p)
Visual Load 2.9740.80 3.6740.99 -4.489 (0.000) 3.374+1.04 3.8340.99 -4.703 (0.000)
Comprehension Load 3.2340.92 3.84+0.86 -4.481 (0.000) 3.51£1.09 3.89+0.99 -4.326 (0.000)

Scene (Violations) \ Uncontradictory S8.1 (2) Contradictory S8 (9) Z (p) \ Without Occlusion S5.1 (8) With Occlusion S5 (28) Z (p)
Visual Load 3.9340.87 4.06+0.83 -1.330 (0.183) 2.76+1.36 4.20+0.86 -5.933 (0.000)
Comprehension Load 3.494+1.06 3.8741.02 -4.204 (0.000) 2.87+1.34 4.16+0.77 -5.560 (0.000)

Scene (Violations) \ Compatible S6.1 (4) Incompatible S6 (7) Z (p) \ Normal S3.2 (9) Overcrowded S3.1 (16) Z (p)
Visual Load 3.9140.86 4.04+0.82 -1.435 (0.151) 4.13+0.76 4.34+0.63 -1.719 (0.086)
Comprehension Load 3.6710.97 4.09+0.76 -3.335 (0.001) 3.5740.94 4.09+0.74 -3.429 (0.001)

The visual and comprehension loads are reported in the format of mean+standard deviation.

TABLE IV

and p are the Z statistic and p value.

INDICATORS FOR VISUAL AND COMPREHENSION LOADS IN TRAFFIC VIOLATION HOTSPOTS

Loads Indicators

Description

1. Blurred Signs&Markings
II. Worn-out Markings
III. Occluded Signs

Visual Load

The Blurred Signs&Markings increase the drivers visual load.
The Worn-out Markings increase the drivers’ visual load.
The Occluded Signs increase the drivers’ visual load.

I. Overcrowded Signs
Comprehension Load  II. Incompatible Signs

The Overcrowded Signs increase the drivers’ comprehension load.
The Incompatible Signs increase the drivers’ comprehension load.

III. Contradictory Signs&Markings  The Contradictory Signs&Markings increase the drivers’ comprehension load.

Blurred Signs&Markings

Road Marking

Btoctor Worn-out Markings

Occluded Signs

Overcrowded Signs

Traffic Sign Incompatible Signs
Detector

Traffic Scenes

Contradictory
Signs&Markings

Occluded Signs

Traffic Violation-
Prone Scenes

T
“ans

Visual and Comprehension Loads

Explainable Diagnosing Model

Non Traffic Violation-
Prone Scenes

Fig. 7. The explainable model for visual and comprehension diagnosing in traffic scenes.

VI. LOAD DIAGNOSING FOR TRAFFIC SCENES

In this section, we build an explainable diagnosing model
based on the indicators to automatically estimate drivers’
visual and comprehension loads in traffic scenes.

A. Explainable Diagnosing Model

Image-based traffic scenes can be collected by mobile
devices or from crowdsensing platforms, such as Baidu
Panoramas.® As shown in Fig. 7, for traffic scenes, a road
marking detector based on Mask R-CNN [77] is trained to
detect road markings and worn-out road markings. A traffic
sign detector based on YOLOv4 [78] is used to detect traf-
fic signs, arrows in indication signs, and traffic signs with
occlusion.

The detection results are input into 6 evaluators to get
6 scores for 6 indicators correspondingly. Suppose the traffic
facilities detected in the scene are Fi, F>, ..., F, (traffic
signs and markings in normal condition), Wi, Wa, ..., W,
(worn-out road markings), Oi, O3, ..., O, (occluded traf-
fic signs), and Aj, As,...,Ag (arrows in indication
signs). We use {Cr1,Cr2,...,Crq}, {Cwi1,Cw2, ..., Cwp},
{Co1,Co02,...,Coc},and {Ca1, Caz, ..., Caq} to denote the
sets of confidence values of traffic signs and markings in

8https://quanjing‘baidu.com/

normal condition, worn-out road markings, traffic signs with
occlusion, and arrows in indication signs, respectively. The
evaluators are detailed as follows.

o Blurred Signs&Markings. The blurriness of traffic

signs&markings influences their probabilities of being
detected. We use the confidence values to estimate the
scores for Blurred Signs&Markings. The score is deter-
mined by the blurriest traffic signs&markings in normal
conditions, i.e., the minimum values among Cri, Cr2,...,
Crn. A lower blurring score means a higher blurring
degree of the traffic signs&markings.

Worn-out Markings. a higher the confidence value of
the detected worn-out marking means a higher prob-
ability of an actual worn-out marking. The Worn-out
Markings scores are determined by the most worn-out
road markings in scenes, i.e., the minimum values among
1—Cwi,1—Cw2,...,1—Cwp. A lower score means a
higher wearing degree of the road markings in the scene.
If there is no worn-out road marking, the score is one.
Occluded Signs. Similar to the Worn-out Markings, the
Occluded Signs score is determined by the most occluded
traffic Signs in the scene, i.e., the minimum values among
1—Co1,1—Cop2,...,1 —Cp.. A lower score means a
higher occlusion degree of the traffic signs in the scene.
If there is no traffic sign occluded, the score is one.
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o Overcrowded Signs. The score for Overcrowded Signs
is determined by the number of normal condition traf-
fic signs detected weighted by their confidence values
and normalized into [0, 1], ie., 1 — (3.7, CF;)/10.
If &%, Cri)/10 > 1, the score is set to 0. A lower
score means more crowded signs.

o Incompatible Signs. The score for Incompatible Signs is
determined by the most incompatible arrow arrangement
of indicator signs in the scene. For every pair of arrows in
the same indicator sign, we first check whether they are
compatible according to their locations and types. If they
(A;, Aj) are incompatibility (e.g., left and right arrows
with up and down arrangement), their incompatibility
score is 1 — Cy; x Caj. The incompatibility score of
the scene is the minimal value among the incompatibility
pairs. A lower score means a more incompatible scene.
If there is no incompatible pair, the score is one.

o Contradictory Signs&Markings. The score for Contra-
dictory Signs&Markings is determined by the most con-
tradictory traffic signs&markings in the scene. For every
pair of contradictory traffic signs&markings (F;,F;) in
the scene (e.g., no left turn signs and left turn road
markings, no u-turn signs and u-turn signs), their score
is 1 — Cp; x Cfj. The score of the scene is the minimal
value among the contradiction scores of the contradictory
pairs. A lower score means a more contradictory scene.
If there is no contradictory pair, the score is one.

A classifier is trained based on the scores for load indicators
to classify traffic scenes into traffic violation-prone and non-
traffic violation-prone scenes. Here we use XGBoost [79] since
it is efficient and can give the importance of features.

B. Evaluation

1) Datasets: The datasets for training the traffic sign and
marking detectors and model evaluation include:

Traffic Sign Dataset. The Traffic Sign Dataset is from [80],
including 100,000 images containing 30,000 traffic-sign
instances. Furthermore, we annotate 400 occluded traffic signs
and 587 arrows in indication signs (including 259 left arrows,
329 right arrows, 144 up arrows, and 88 down arrows).

Road Marking Dataset. The Road Marking Dataset is
from [81], including lanes (25,354 single white, 74,733 dashed
white, 206 double white, 28,054 single yellow, 5,734 dashed
yellow, and 8,998 double yellow) and arrows (1,186 left,
537 right, 6,968 straight, and 127 u-turn). Furthermore,
we annotate 400 worn-out road markings.

Traffic Scenes. Fifty traffic violation-prone scenes and
50 non-traffic violation-prone scenes are used to evaluate the
performance of the load diagnosing model. The traffic scenes
are street view images collected from Baidu Panoramas whose
data are uploaded by the company or the crowd, and we
augment their contexts using Adobe Photoshop.

2) Baseline Methods: We compare our method with various
baseline methods. We separate the 100 traffic scenes into a
training set (70%), validation set (10%), and test set (20%).
In order to achieve a fair comparison, we make sure that the
three sets and parameters used in each method are the same.
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Fig. 8. The ROC curves of the classification performance of the proposed
diagnosing model and baseline methods.

CNN is an end-to-end classifiers with convolutional neural
networks [82]. It can directly extract features from images.

Conv + XGBoost extracts features from images using
convolutional layers, but different from CNN which does
classification using the fully connected layer, the extracted
features are used to train a XGBoost classifier.

CNN + ImageNet is an end-to-end classifiers with convo-
lutional neural networks fine-tuned from pre-trained weights
on ImageNet [83].

3) Results: We use the ROC curve [84] to evaluate the
performance of the proposed model and baseline methods on
the test set, as shown in Fig. 8. CNN did not perform well, and
Conv + XGBoost performed better than CNN, which may
be resulted from insufficient training data. The deep-learning-
based method usually requires a large amount of training data
to achieve high performance, and thus transfer learning [85]
is proposed to improve the performance on small datasets.
CNN + ImageNet leveraged the weights pre-trained on Ima-
geNet and achieved the best performance, which indicates the
feasibility of identifying traffic violation-prone scenes based
on traffic scene images. The proposed diagnosing model not
only achieves comparable good performance with an AUC
of 0.90 but also can present the load profiles to explain the
potential causality of traffic violation-prone scenes.

C. Case Studies

1) A Marked Lane Violation Hotspot: As shown in Fig. 9,
it is a traffic violation hotspot with frequent marked lane
violations. The traffic scene has a poor traffic lane condition,
increasing drivers’ visual load and achieving a low score in
Worn-out Markings. The worn-out lane detected used to be
a solid white line that drivers are not permitted to press this
line and change the driving lane. However, since the traffic
lane is seriously worn-out, drivers are very likely to regard it
as a dashed line or overlook it, and thus commit marked lane
violations. Besides, the street view image has low resolution,
and there is a no-right-turn sign in the distance, leading to
some loss in the Blurred Signs&Markings score.

2) An lllegal Turning Violation Hotspot: Fig. 10 shows a
traffic violation hotspot with frequent illegal turning viola-
tions. The traffic scene gets low scores in Occluded Signs
and Overcrowded Signs. There is a no-right-turn traffic sign
occluded by the streetlight pole, and a no-access sign occluded
by trees, increasing the visual load. Moreover, there are many
traffic signs, increasing the comprehension load in terms of
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Fig. 10. A traffic violation hotspot caused by occluded signs and overcrowded signs. (a) The street view image of the scene with detection results. (b) The

visual comprehension load profile.

Overcrowded Signs. Specifically, the street view image is
downloaded from Baidu Panorama, and the first traffic sign
on the second row of the green signboard is automatically
masked by Baidu Panorama. Similar to the first case, the
low resolution of the picture influences the score of Blurred
Signs&Markings.

VII. DISCUSSION

A. Generalizability

Compared with many existing driving simulators, our
driving simulator is cheaper, enhancing the generalizability
of our work. Point clouds are getting more accessible to
the general public since more and more mobile devices are
equipped with LiDAR, such as iPad Pro and iPhone [55]. The
software part of the driving simulator is developed using the
open-source Unity 3D Engine, and the hardware part consists
of devices on sale to the public and popular in VR Games.

Besides, given more indicators, the diagnosing model can
be easily extended since the detectors and evaluators in the
model are independent of each other. For example, besides
the road marking and traffic sign detectors, new detectors,
such as a road condition detector, can be added to the model.
New evaluators can also be easily added to get scores for new
indicators. Then, the load profile and classifier can be updated
with new features based on the new indicators.

Furthermore, our work also provides implications for other
areas, such as transportation facility maintenance and driving
assistance systems. For example, if a traffic scene gets a
low score in Overcrowded Signs, the authority can remove
the redundant signs in this scene to improve the score. The
diagnosing model can be embedded into driving assistance
systems to raise awareness about the potential risk factors in
various traffic scenes.

B. Limitations and Future Work

In traffic violation hotspot modeling, we model the typical
traffic violation hotspots based on real-world traffic violation
data. However, since the traffic violation data are only from
Xiamen City which has a tropical oceanic monsoon climate
and no snowy or dusty days, the weather contexts we can
explore are limited. Besides, although the typical hotspots
selected are representative, there may still be some missing
types due to the limited data. In the future, we can collect data
from other cities with different climatic conditions, validate
the current selected typical hotspots and obtain more typical
hotspots by crowdsensing.

In the scene-based visual and comprehension load study,
to explore the environmental indicators for the general public,
we recruit drivers from various age groups and binary gender,
and the experiments are conducted in a quiet room without
interference from individuals’ emotional status (e.g., anger)
or contexts (e.g., rushing to work). However, this sample
may still lack demographic diversity in terms of race and
personality. The derived six indicators may not adequately
reflect all unfriendly environmental factors in a traffic scene.
To address this issue, we can recruit more drivers with different
backgrounds to experience driving using the simulator and
extend indicators based on their opinions.

Besides, we directly use the comprehensibility and visibility
of traffic facilities in traffic scenes to represent the com-
prehension and visual load added to drivers. Although it is
more cost-effective and intuitive, it may introduce bias. In the
future, we may also use specialized equipment or standardized
rating scales to measure drivers’ workload to validate the
effectiveness of the designed questionnaire.

In load diagnosing for traffic scenes, we build a diagnosing
model based on the derived six indicators to automatically
estimate drivers’ visual and comprehension loads in various
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traffic scenes. Although the current diagnosing model achieves
good performance, its explainability can be further improved
by considering more indicators. Also, the model can only ana-
lyze a traffic scene with images, and the scores are estimated
based on traffic sign and marking detectors, while the texts in
traffic signs also play an important role. We can incorporate
other literacies such as texts and audio to build a multimodal
model [86] to further improve the explainability.

VIII. CONCLUSION

In this work, we propose a three-phase framework to
derive indicators for drivers’ visual and comprehension loads
related to traffic violations and build an explainable diagnosing
model. First, we extract traffic violation hotspots from traffic
violations and select representative typical hotspots. Second,
we model the typical traffic violation-prone scenes based on
the point clouds and traffic environment data. Third, we build
a driving simulator, recruit drivers with various backgrounds to
experience driving in various traffic scenes, and derive drivers’
visual and comprehension load indicators based on drivers’
feedback. Finally, we build a diagnosing model based on the
indicators to automatically estimate loads in traffic scenes and
evaluate the model using real-world datasets.
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