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Abstract— Traffic violations have become one of the major1

threats to urban transportation systems, undermining road safety2

and causing economic losses. Although various methods have3

been proposed by road authorities and researchers to find out the4

possible causes of traffic violations, existing methods often fail to5

diagnose traffic violations from drivers’ perspectives and contexts6

or consider their visual and comprehension loads while driving.7

In this work, we propose a driver-centered simulation platform8

to inspect drivers’ loads in traffic violation hotspots. Specifically,9

we first build a driving simulator based on the 3D point clouds10

of real-world traffic violation hotspots. We then recruit drivers11

to simulate driving in designated traffic scenes. Indicators for12

drivers’ visual and comprehension loads are derived based on13

drivers’ feedback. Upon this basis, we build an explainable model14

to automatically indicate drivers’ visual and comprehension15

loads under various crowd-sensed traffic scenes. Experiments16

using real-world data from a Chinese City (Xiamen) and case17

studies show that our approach successfully derives a set of18

prominent indicators to effectively diagnose drivers’ visual and19

comprehension loads in real-world traffic violation hotspots.20

Index Terms— Traffic violation, crowdsensing, data analytics,21

driving simulation.22

I. INTRODUCTION23

TRAFFIC violations, such as marked lanes violations and24

illegal turns, are one of the leading causes of traffic acci-25

dents [1], undermining human safety and causing economic26
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losses [2]. Therefore, it is important for urban authorities to 27

find out the possible causes of traffic violations in urban road 28

networks and implement corresponding strategies to alleviate 29

the traffic violation and accident problem. 30

There are various causes of traffic violations. Some vio- 31

lations are results of drivers’ intentional behaviors [3], such 32

as drunk driving and anger driving. Others are unintentional 33

and are usually caused by unfriendly traffic environments 34

(e.g., worn-out road markings and appalling weather con- 35

ditions) [4]. Unfriendly environmental factors significantly 36

increase drivers’ visual and comprehension loads [5], [6] 37

and thereby lead to accidental breaking of traffic rules or 38

regulations [7]. These high load-induced traffic violations are 39

usually observed in specific road intersections or segments 40

(i.e., traffic violation hotspots) during specific periods (i.e., 41

traffic violation peaks). By understanding how environmental 42

factors add to drivers’ visual and comprehension loads in these 43

traffic violation hotspots, urban authorities can improve traffic 44

infrastructure accordingly to reduce the loads and ultimately 45

mitigate the unintentional traffic violation issue. 46

Traditionally, the possible visual and comprehension loads 47

of traffic violation hotspots are diagnosed by field studies of 48

inspectors [8]. However, field trips are usually labor-intensive 49

and time-consuming, and it is challenging to capture all 50

traffic and external environments relating to traffic violations 51

peaks [9]. As an alternative, researchers have proposed to 52

diagnose possible factors relevant to drivers’ loads from street 53

view imagery [10], dashboard traffic cameras [11], Automated 54

Enforcement System (AES) [12], etc. However, these methods 55

are incapable of restoring the complex traffic environments at 56

the time of traffic violation peaks (e.g., weather, illumination, 57

and vehicle density) and often fail to identify issues from 58

drivers’ perspectives and trajectories. Therefore, a comprehen- 59

sive and driver-centered approach to diagnose load-inducing 60

factors at traffic violation hotspots is in great need. 61

With the development of autonomous driving and 62

augmented reality, more and more vehicles and mobile 63

devices are equipped with Mobile Laser Scanning (MLS) 64

systems [13], making it possible to conduct widespread 3D 65

scanning and collect large-scale city-wide 3D LiDAR point 66

clouds [14]. By analyzing the point clouds, stereo views 67

of the scanned location can be restored [15], providing 68

researchers with new opportunities to understand the visual 69

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Xiamen University. Downloaded on October 06,2022 at 05:30:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4857-7143
https://orcid.org/0000-0003-4506-2750
https://orcid.org/0000-0002-1235-9382
https://orcid.org/0000-0002-9141-8474
https://orcid.org/0000-0002-6958-6658
https://orcid.org/0000-0001-6075-796X
https://orcid.org/0000-0002-9847-7784
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-4554-6782


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. The structures of the driving simulator. (a) An illustration of the driving simulator implement and a traffic scene with overcrowded signs. (b) The
real-world deployment of the driving simulator.

and comprehension loads in given traffic environments.70

For example, Zhang et al. [16] presented a quantitative71

visual recognizability evaluation method for traffic signs72

based on traffic recognition theory and 3D LiDAR point73

clouds. However, point clouds only contain the spatial74

structure information of the scanned locations while lacking75

contexts such as weather conditions and vehicle densities.76

To reconstruct specific drivers’ contexts, we need to augment77

the point clouds with contextual features.78

Therefore, we first locate traffic violation hotspots and79

restore violation-prone scenes based on crowd-sensed 3D point80

clouds and contexts. Second, we build a driving simulator in81

Virtual Reality (VR) (Fig. 1) for drivers to experience driving82

in various traffic scenes modeled from real-world traffic viola-83

tion hotspots. Based on drivers’ feedback, we derived a set of84

indicators of drivers’ visual and comprehension loads related85

to traffic violations, namely Blurred Signs&Markings, Worn-86

out Markings, Occluded Signs, Overcrowded Signs, Incompat-87

ible Signs, and Contradictory Signs&Markings. For example,88

the traffic signs in Fig. 1(a) are overcrowded with redundant89

information, increasing drivers’ comprehension loads (detailed90

in Section V). Furthermore, we build a diagnosing model91

based on the derived indicators to evaluate their effectiveness92

and apply the model to real-world traffic scenes to inspect93

the possible visual and comprehension loads experienced by94

drivers. To this end, the following issues need to be addressed.95

1) Restoration of Traffic violation-prone scenes. Traffic vio-96

lations are distributed across the road network. To restore97

traffic violation-prone scenes, it is essential to extract98

violation hotspots and the peaks of violation incidents99

at each hotspot. We first perform hotspot extraction on100

traffic violation data using a density-based spatiotempo-101

ral data clustering method. Second, we select the typical102

traffic violation hotspots based on their spatiotemporal103

characteristics and construct their structures with point104

clouds. Third, we augment the typical traffic violation105

hotspots with contexts derived from crowd-sensed data106

and model the traffic violation-prone scenes.107

2) Derivation of indicators for drivers’ visual and com-108

prehension loads in traffic violation-prone scenes. To109

understand drivers’ visual and comprehension loads in110

violation-prone scenes, we build a driving simulator for111

drivers to experience driving in various traffic scenes 112

and provide feedback on the perceived visual and com- 113

prehension demand. A hybrid approach of inductive and 114

deductive analysis [17] (Fig. 5) is used to derive indica- 115

tors for drivers’ visual and comprehension loads related 116

to traffic violations from drivers’ input and literature of 117

unfriendly environmental factors. 118

3) Diagnosing visual and comprehension loads in a new 119

traffic scene. It is labor-intensive and time-consuming to 120

recruit drivers to diagnose all traffic violation hotspots. 121

We build a diagnosing model based on the derived 122

indicators to automatically estimate drivers’ visual and 123

comprehension loads in traffic scenes. Specifically, road 124

marking and traffic sign detectors based on Computer 125

Vision are trained to identify these traffic infrastructural 126

elements in image-based traffic scenes. Scores of the 127

derived load indicators are calculated by a series of eval- 128

uators, and a classifier is trained to classify traffic scenes 129

into violation-prone and non-violation-prone scenes. 130

To summarize, the key contributions of this paper include: 131

• To the best of our knowledge, this is the first work 132

on understanding drivers’ visual and comprehension 133

loads leveraging driving simulation and building a diag- 134

nosing model for traffic scenes accordingly. Such a 135

driver-centered framework can help urban authorities 136

better inspect risky factors in road networks and take 137

corresponding measures to alleviate the traffic violation 138

issue. 139

• We propose a three-phase framework to diagnose the 140

drivers’ visual and comprehension loads in traffic scenes. 141

Our method can not only derive indicators of drivers’ 142

visual and comprehension loads related to traffic vio- 143

lations effectively but also estimate loads in various 144

crowd-sensed traffic scenes automatically and systemati- 145

cally. 146

• We implement the driving simulator and evaluate our 147

approach using real-world datasets from a Chinese City 148

(Xiamen). The results show that our approach success- 149

fully derives a set of prominent indicators to effectively 150

diagnose drivers’ visual and comprehension loads in 151

real-world traffic violation hotspots. 152
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TABLE I

DRIVER AND ENVIRONMENTAL FACTORS RELATED TO TRAFFIC VIOLATIONS

II. RELATED WORK153

This section introduces the traffic violations and then154

reviews the works on factors leading to traffic violations.155

We divide these factors into driver factors and environmental156

factors (TABLE I) and elaborate on environmental factors157

which tend to form traffic violation hotspots. We further158

discuss the existing works on the relationships between envi-159

ronmental factors and drivers’ workload and the measurement160

of drivers’ workload. Finally, we discuss the existing works161

on mobile laser scanning and driving simulators.162

A. Traffic Violations163

Road traffic injuries have a significant impact on health and164

development [33]. There have been numerous works for pro-165

moting road safety in the literature. Some researchers worked166

on reducing in-vehicle risks, such as increasing the reliability167

of the controller area network in buses [34] and deploying168

driving assistance applications for drivers [35]. Others tried169

to improve traffic environments, such as countermeasures to170

reduce yellow-light running in dilemma zone [36]. As one of171

the major results of risky in-vehicle behaviors and unfriendly172

traffic environments, traffic violations have received extensive173

attention in both industry and academia.174

The widespread traffic violation monitoring technologies,175

such as surveillance cameras and speed enforcement cameras,176

make it possible to collect a large amount of traffic violation177

data [37]. Also, many traffic violation crowdsensing platforms178

have been developed, making traffic violation reporting easier.179

These large-scale city-wide traffic violation data provide us180

with unprecedented opportunities to look into their causes.181

B. Factors Related to Traffic Violations182

Many studies have been conducted to identify the factors183

leading to traffic violations. Based on the literature review,184

we divide these factors into driver factors and environmental185

factors, as shown in TABLE I. Driver factors are drivers’186

characteristics related to traffic violation behaviors. Some are187

drivers’ intrinsic characteristics, such as drivers’ age, person-188

alities [20], distractibility [21], education levels, and occupa-189

tions [19]. Others are extrinsic characteristics, such as fatigue190

symptom [22], emotional states [23], alcohol and drug [24],191

[25], and drivers’ interaction with mobile phones [26].192

Environmental factors are characteristics of traffic environ-193

ments. Unlike traffic violations induced by driver factors that194

are usually isolated and incidental, those induced by unfriendly195

environmental factors tend to form traffic violation hotspots196

and can be prevented by improving traffic environments.197

The environmental factors can influence drivers’ visibility198

and comprehension loads and thereby influence their driving199

behaviors [5], [6]. We divide the potential environmental200

factors into four categories (TABLE I). Weather conditions 201

show a significant influence on drivers’ visual loads [27], [29]. 202

Nighttime driving increases drivers’ visual loads [4]. As for 203

the vehicle density, researchers have different conclusions. For 204

example, Shinar [31] claimed that traffic congestion increases 205

driver aggression and thus increases the risks of traffic viola- 206

tions and accidents, while Lajunen et al. [38] suggested that 207

congestion does not increase driver aggression directly. The 208

conditions of traffic facilities also play an essential role. 209

Many works studied the relationships between the design 210

features of traffic facilities (e.g., familiarity, concreteness, 211

complexity, meaningfulness, and semantic distance [32]) and 212

their visibility and comprehensibility. Carlson [39] investi- 213

gated the effects of the brightness of traffic signs on their 214

visibility. Kersavage et al. [40] evaluated the effectiveness of 215

using different wording, text, background colors, and types of 216

information on the visibility and comprehensibility of signs. 217

C. Relationships Between Environmental Factors and 218

Drivers’ Workload 219

Unfriendly traffic environmental factors increase drivers’ 220

workload [5], [6], making drivers prone to breaking traffic 221

rules or regulations accidentally there [7] and leading to 222

traffic violation hotspots. The modeling of drivers’ work- 223

load has been widely studied. Some works simulated the 224

mechanism of human information processors and proposed 225

computational models (e.g., queuing network model [41] and 226

neural network [42]) to estimate drivers’ workload and perfor- 227

mance. However, these works lack the analysis of relationships 228

between specific environmental factors and traffic violations. 229

Besides, some works estimate drivers’ workload directly 230

based on drivers’ physiological data and vehicle states influ- 231

enced by driving environments. For example, Kim et al. [43] 232

analyze the electroencephalogram data collected through an 233

urban road driving test to explain the cognitive workload 234

characteristics of different driving sections. Xing et al. [44] 235

estimated workload using a support vector regression model 236

based on the physiological data collected from drivers and 237

vehicle speed and position data. Based on drivers’ physiologi- 238

cal data, vehicle signals, and traffic contexts, in [45] and [46], 239

deep learning architectures were developed to assess drivers’ 240

workload. Noh et al. [47] proposed a framework to generate 241

personalized driver workload profiles using physiological and 242

operational data. However, these works mainly emphasize 243

individuals. They are good at measuring workloads with 244

physiological data collected from different drivers rather than 245

directly assessing workloads for traffic scenes without drivers. 246

On the other hand, some works studied the relationship 247

between traffic environment factors and drivers’ workload. For 248

example, in [48], researchers found that the mental workload 249

of drivers increased with an increase in other heavy goods 250
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vehicles. Precht et al. [27] reviewed the effects of various251

weather conditions on drivers’ workload. Yared et al. [49]252

found that nighttime driving creates a high perceived work-253

load. However, these works mainly focus on several specific254

conditions. Although they quantified the environmental factors255

and established the relationship between these factors and256

drivers’ workload, they are not able to directly estimate traffic257

violation risks for traffic scenes quantitatively.258

D. Drivers’ Visual and Comprehension Loads259

Drivers’ workload (e.g., cognitive and visual loads) is260

usually measured by physiological data and rating scales.261

For example, various strategies, such as empirical techniques,262

rating scales, and psycho-physiological, are used to determine263

the cognitive load. The visual load is usually quantified using264

eye movement measures, and higher visual demands lead265

to reduced speed and increased lane-keeping variation [50].266

Based on the literature review, we can find that the increas-267

ing cognitive load usually leads to decreasing comprehen-268

sibility [51], and reducing the visual load can improve the269

visibility [50].270

However, cognitive load is usually measured from the271

perspective of drivers’ factors. To build a diagnosing model272

which can automatically figure out unfriendly environmental273

factors in traffic scenes, it is critical to reduce the influence of274

drivers’ factors and measure the drivers’ workload from the275

perspective of environmental factors.276

Therefore, in this paper, inspired by the cognitive load277

theory, we define the difficulty of understanding the meaning278

of traffic facilities as the comprehension load. We use the279

comprehension load to describe the cognitive load added to280

drivers while comprehending traffic facilities. In this way,281

we infer drivers’ comprehension and visual loads based on282

the comprehensibility and visibility of traffic facilities in traffic283

scenes, and thus directly assess violation risks of traffic scenes.284

Also, this kind of measurement is much easier to implement,285

minimizing the possible interference during driving.286

E. Mobile Laser Scanning287

Mobile Laser Scanning (MLS) collects geospatial data from288

vehicles and mobile devices fitted with LiDAR, cameras,289

and other remote sensors [52]. It can rapidly collect accu-290

rate and reliable 3D point clouds to represent 3D shapes291

or objects [53] and has been widely used in Autonomous292

Driving [14], Augmented Reality [54], etc. In recent years,293

more and more vehicles and mobile devices (e.g., iPad Pro and294

iPhone Pro [55]) are equipped with MLS systems, facilitating295

the collection of large-scale 3D point clouds [14].296

By processing point clouds, stereo views of the urban traffic297

environment can be restored [16], providing researchers with298

new opportunities to understand drivers’ visual and compre-299

hension loads. For example, Zhang et al. [16] presented a300

quantitative visual recognizability evaluation method for traffic301

signs based on traffic recognition theory and 3D LiDAR point302

clouds. Takeuchi et al. [56] proposed a fast lane visibility303

check method using a high-density point cloud map. However,304

point clouds only contain the spatial structure information of305

the scanned locations [57] while lacking contextual features. 306

Therefore, we use point clouds to reconstruct traffic violation 307

hotspots, and augment their contexts with vehicle density, 308

weather, and illumination features. 309

F. Driving Simulation Environments 310

Driving simulation has been used in various scenarios, such 311

as driving training [58], commercial games [59], and driving 312

performance studies [60]. There are many existing driving 313

simulators. Some simulators are based on virtual labs. For 314

example, Dosovitskiy et al. [61] provided open digital assets 315

to support autonomous driving. STISIM1 provides professional 316

driving simulation for occupational therapy, driving research, 317

and driver training. OpenDS2 is an open-source driving sim- 318

ulator with configurable vehicles and an informative GUI. 319

The virtual lab-based simulators are more flexible and can be 320

customized. However, although some driving simulators, such 321

as NADS [62], can provide high-fidelity driving environments, 322

they require specialized equipment and are inaccessible to the 323

general public. Besides, they usually have limited scenarios. 324

The contents are usually created from scratch by digital artists, 325

unable to directly generate scenes based on real-world data and 326

fail to simulate the complex natural urban traffic environments. 327

Other simulators work on roads. For example, 328

Baltodano et al. [63] introduced a real road autonomous 329

driving simulator. Wang et al. [64] studied on-road partial and 330

fully autonomous driving interaction with a driving simulator 331

in commercial passenger vehicles. Goedicke et al. [65] 332

developed tools to enable VR driving simulation in a vehicle as 333

it travels on the road. However, although these simulators have 334

natural driving environments, they require much more labor 335

and time than the virtual lab-based and have inherent risks. 336

Therefore, we build the driving simulator based on the 337

highly accurate point clouds collected from real-world traffic 338

scenes directly so that it can simulate complex urban traffic 339

environments with high fidelity and flexibility. The VR driving 340

simulator can provide users with immersive driving experi- 341

ences and significantly reduce costs. 342

III. PRELIMINARIES AND FRAMEWORK 343

Definition 1 (Traffic Violation Hotspot and Peak): A traffic 344

violation hotspot refers to a location with more traffic vio- 345

lations than others. Traffic violation peaks are the peaks of 346

the time distribution of traffic violations in traffic violation 347

hotspots. 348

Definition 2 (Traffic Scenes): Traffic scenes are vehicles’ 349

surroundings from the perspective of vehicles [66]. Real-world 350

crowd-sensed traffic scenes are traffic scenes taken by the 351

crowd in the real world (e.g., photos of road environments 352

taken by dashcams or passengers). 353

Definition 3 (Traffic Facilities): Traffic facilities include traf- 354

fic signs, road markings (e.g., lane markings, arrow markings, 355

etc.), and other pieces of equipment that are used to control, 356

regulate, and guide traffic. This paper mainly focuses on traffic 357

signs, lane markings, and arrow markings. 358

1https://stisimdrive.com/
2https://opends.dfki.de/
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Fig. 2. Framework overview.

Definition 4 (Point Clouds and Mobile Laser Scanning):359

Point clouds are a collection of data points representing a360

3D object and usually generated by 3D laser scanning or361

photogrammetric approaches [53]. Mobile Laser Scanning362

(MLS) allows the collection of accurate 3D point clouds using363

laser systems mounted on vehicles and mobile devices fitted364

with LiDAR, cameras, and other remote sensors [53].365

Definition 5 (Visual and Comprehension Loads): Visual load366

refers to the difficulty of perceiving objects [50]. We use367

the visual load to describe the load added to drivers while368

trying to see traffic facilities clearly in traffic scenes, reflecting369

the visibility of traffic facilities. Inspired by the cognitive370

load theory [67], we define comprehension load as the dif-371

ficulty of understanding the meaning of objects. We use the372

comprehension load to describe the cognitive load added to373

drivers while comprehending traffic facilities, which reflects374

the comprehensibility of traffic facilities.375

We propose a three-phase framework to diagnose the376

drivers’ visual and comprehension loads related to traffic377

violations (Fig. 2). First, we extract hotspots from traffic378

violations and select typical hotspots to collect their point379

clouds and augment their contexts. Then, we build a driving380

simulator, recruit drivers to experience driving in typical381

traffic violation-prone scenes using the simulator, and derive382

indicators for drivers’ visual and comprehension loads based383

on analyzing the drivers’ feedback. Based on the indicators,384

we build a model to automatically estimate drivers’ visual and385

comprehension loads in traffic scenes.386

IV. CROWD-BASED TRAFFIC VIOLATION387

HOTSPOT MODELING388

In this phase, our goal is to model traffic violation hotspots389

leveraging heterogeneous crowd-sensed data. First, we extract390

traffic violation hotspots from traffic violation data leveraging391

a density-based spatial-temporal data clustering method. Then,392

we select typical traffic violation hotspots and reconstruct their393

spatial structures by their 3D point clouds. After that, we aug-394

ment the hotspots using contextual features. We elaborate on395

the details of our approach as follows.396

A. Traffic Violation Hotspot Extraction397

We first extract traffic violation peaks from scattered traffic398

violations. For each traffic violation p, its location is denoted399

by γ (a road or road intersection). We aggregate traffic 400

violations with the same locations (i.e., the same roads or 401

road intersections) and thereby get a set of locations Γ , i.e., 402

Γ = I ∪ R = {γ1, γ2, . . . , γN }, γi = (i, Pi ), 1 ≤ i ≤ N , 403

where I , R, i , Pi , and N are the set of road intersections with 404

traffic violations, the set of roads with traffic violations, the 405

ID of road intersections or roads, the set of traffic violations 406

in the road or road intersection i , and the number of road 407

intersections or roads, respectively. Specifically, for some long 408

roads, we need to extract road segments with frequent traffic 409

violations from them. Besides, since the time distribution of 410

traffic violations in the same road intersection or segment is 411

uneven, we also need to extract periods with frequent traffic 412

violations from the continuous time. To this end, for each 413

location γi ∈ Γ (1 ≤ i ≤ N), we cluster its traffic violations 414

into different clusters with a density-based spatiotemporal 415

data clustering method, ST-DBSCAN [68]. ST-DBSCAN can 416

discover clusters according to non-spatial and spatiotemporal 417

values of objects, which is very suitable for traffic violation 418

extraction. After clustering, the scattered traffic violations are 419

clustered into traffic violation peaks. 420

After getting the set of traffic violation peaks �, we first 421

initialize the set of traffic violation hotspots H with �. Then, 422

we get the closest distance of sets in H , denoted as dmin 423

and if dmin is smaller than δr , the closest pair of sets are 424

combined as one set. The closes pair of sets are iteratively 425

combined until the dmin is no smaller than δr . Note that the 426

distance between two sets are determined by the geographic 427

distance of the average longitude/latitude in each set. Finally, 428

we remove the sets whose size (the number of peaks) is smaller 429

than δk from H , and get a set of traffic violation hotspots H , 430

and for each hotspot hi ∈ H , it consists of traffic violation 431

peaks in this location, i.e., H = {h1, h2, . . . , hK }, where K 432

is the number of traffic violation hotspots extracted, ∀i, j ∈ 433

[1, K ], i �= j, hi ∩ h j = ∅, and (h1 ∪ h2 ∪ . . . ∪ hK ) ⊆ �. 434

B. Hotspot Structure Construction 435

After extracting the traffic violation hotspot, our next step 436

is to construct their spatial structures using their point clouds. 437

We build a Point Cloud Crowdsensing Platform to collect their 438

point clouds. As shown in Fig. 3, MLS providers (detailed in 439

Appendix III) upload the point clouds of traffic environments 440
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Fig. 3. The point cloud Crowdsensing platform.

to the crowdsensing platform. We can view the collected point441

clouds on the platform.442

Since investigating all traffic violation hotspots requires443

rather high costs, we classify traffic violation hotspots based on444

their spatiotemporal contexts and select typical traffic violation445

hotspots from them. More specifically, in terms of time,446

we divide the time into T hours, and for each hotspot hi ∈ H447

(i ∈ [1, K ]), we represent its traffic violation peak distribution448

using a T -dimensional 0-1 vector vi , where the j th entry is set449

to one if the j th hour is in a traffic violation peak. We form450

the traffic violation hotspots as a weighted graph whose nodes451

are hotspots and weights of edges are the Euclidean Distance452

Similarity between two nodes (hotspots). A hierarchical453

clustering algorithm, Louvain algorithm [69], is used to454

divide traffic violation hotspots into different communities.455

In terms of space, we assign traffic violation hotspots to456

different urban functional areas based on their Points of Inter-457

est (POIs) features [70]. We divide POIs into five categories,458

i.e., business, accommodation, entertainment, infrastructure,459

and tourism. We count the number of POIs for each category460

and build the POI features for each hotspot, i.e., �(hi ) =461

[o1, o2, o3, o4, o5]′, where 0 ≤ o1, o2, o3, o4, o5 ≤ 1 are the462

ratios of business, accommodation, entertainment, infrastruc-463

ture, and tourism POIs to all POIs for hotspot hi ,
∑5

i=1 oi =464

1. Then we build five core POI features corresponding to465

business, accommodation, entertainment, infrastructure, and466

tourism, respectively. For core feature �k(1 ≤ k ≤ 5),467

o j = 1( j = k), o j = 0( j �= k). We assign each traffic468

violation hotspot to one of the five spatial categories whose469

core feature has the closest Euclidean distance to them.470

Finally, for each pair of temporal category and spatial471

category, if there exist traffic violation hotspots, we look up472

the point cloud crowdsensing platform to get, if any, point473

clouds of one traffic violation hotspot, and process the point474

clouds by removing the outliers and filtering out interferences475

such as pedestrians and vehicles to get the spatial structures.476

C. Hotspot Context Augmentation477

Our next step is to augment the typical traffic violation478

hotspots. Based on the literature review (TABLE I), we aug-479

ment the following contextual features for traffic violation480

peaks in each typical traffic violation hotspot.481

• Vehicle Density is estimated by the Baidu Traffic Con-482

gestion Index (TCI), which is open-access and has been483

used in many Chinese cities for years [71]. The vehicle484

density of each traffic violation peak is divided into485

four categories, i.e., smooth, slight, moderate, and severe 486

(detailed in Appendix I). 487

• Weather. We retrieve the weather conditions using the 488

Weather Underground API3 and Chinese Meteorological 489

Big Data Platform,4 and divide weather conditions into 490

six categories, {cloudy, rainy, snow, fog, dust, sunny}. 491

Furthermore, for category rainy, snow, fog, dust, and 492

cloudy, they are further divided into four categories 493

{Light, Moderate, Heavy, Violent} according to China 494

Meteorological Bureau (detailed in Appendix II). 495

• Illumination. Since weather conditions influence the 496

illumination and we have considered weather conditions, 497

we classify the illumination conditions into daytime 498

driving and nighttime driving. 499

D. Evaluation 500

1) Datasets: The traffic violation data used in this paper 501

are provided by Xiamen Transportation Bureau, collected from 502

March 2017 to February 2018 by traffic enforcement systems, 503

traffic police, and crowd reporting, including 651 traffic sign 504

violations, 74,921 road marking violations, 1,473 illegal park- 505

ing, 698 speeding violations, and 1,283 other violations such 506

as overtaking and not yielding to pedestrians, all committed by 507

car users. The road network includes Xiamen City. As shown 508

in Fig. 4(g), part of Xiamen City is connected to the mainland, 509

and the other part is an island. We can find that traffic 510

violations are unevenly distributed across the time and space 511

(Fig. 4(a)(b)(c)(g)). 512

2) Results: Based on the traffic violation data, we extracted 513

9,539 traffic violation peaks, and they are clustered into 514

68 traffic violation hotspots. The POI distribution around the 515

hotspots is shown in Fig. 4(d). These hotspots were classified 516

into five spatial categories based on their POI distribution, 517

and classified into three temporal categories based on their 518

traffic violation peak distributions. For each pair of temporal 519

category and spatial category, we select one traffic violation 520

hotspot whose point clouds have been collected. If there exists 521

no available hotspot, we skip this pair of categories. If there 522

exist more than one available hotspot, we randomly select 523

one of them. Finally, we obtained eight typical hotspots. The 524

weather distribution of all data collection periods and with 525

traffic violation peaks in typical hotspots is shown in Fig. 4(e). 526

The distribution of vehicle density of traffic violation peaks in 527

typical hotspots are shown in Fig. 4(f). 528

3https://www.wunderground.com/weather/api/
4http://www.weatherdt.com
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Fig. 4. The overview of datasets and results. (a) The average traffic violations
in a day. (b) The average traffic violations across different months. (c) The
average traffic violations across different seasons. (d) The POI distribution of
traffic violation hotspots. (e) The weather distribution of all data collection
period and with traffic violation peaks in typical hotspots. (f) The distribution
of vehicle density of traffic violation peaks in typical hotspots. (g) The heat
map of traffic violations.

V. SCENE-BASED VISUAL AND COMPREHENSION529

LOAD STUDY530

In this section, a hybrid approach of inductive and deductive531

analysis is used to derive load indicators related to traffic viola-532

tion from drivers’ input. As shown in Fig. 5, we first model the533

traffic violation-prone scenes and build a driving simulator to534

conduct driving simulation experiments (I). We derive a set of535

reasons for traffic violations and unfriendly elements through536

interviews. We further model the experimental traffic scenes537

with unfriendly elements improved and recruit 70 drivers538

to conduct driving simulation experiments (II) and score539

their visual and comprehension loads with questionnaires.540

The experiments are within-subject designed to decrease the541

influence of individual differences and increase the probability542

of finding the differences between the control scene and exper-543

imental scene with fewer participants [72]. Finally, we conduct544

statistical analysis to derive load indicators.545

A. Driving Simulator Development546

We develop a VR driving simulator to conduct driving547

simulation experiments, as shown in Fig. 1(a).548

1) Traffic Violation-Prone Scene Modeling: To model the549

traffic violation-prone scenes, we first extract contextual fea-550

tures significantly related to violation peaks in typical hotspots551

selected. Two T -dimensional 0-1 vectors v and f represent552

the traffic violation peak distribution and contextual features553

for each typical hotspot. For example, for sunny weather,554

if the j th hour is sunny, the j th entry of f is set to one,555

and otherwise set to zero. For other features, f is set in556

TABLE II

THE SIGNIFICANT CONTEXTUAL FEATURES (SIG. FEATURES) AND IDS
OF NINE TRAFFIC VIOLATION-PRONE SCENES MODELED FROM EIGHT

TRAFFIC VIOLATION HOTSPOTS IN XIAMEN

a similar way. Then, we conduct the Chi-Square tests [73] 557

based on the contingency table displaying the joint frequencies 558

of values to evaluate whether the variables are associated or 559

independent. For the 8 typical hotspots, we modeled 9 traffic 560

violation-prone scenes based on their significant contextual 561

features (TABLE II). Specifically, if the violation peaks in a 562

traffic violation hotspot are significantly related to more than 563

one feature, we would model more than one scene accordingly, 564

such as S1 and S2 for H1. 565

In each hotspot, if some types of contextual features are 566

not significantly related to its violation peaks, such as Vehicle 567

Density and Illumination in H1, these types of features in the 568

modeled scenes are set to the most friendly conditions based 569

on the literature review. For example, in S1 and S2, the vehicle 570

density is set to smooth and the illumination condition is set 571

to daytime driving. For hotspots without significant contextual 572

features, we set all conditions in their traffic violation-prone 573

scenes as the most friendly ones. All traffic scenes modeled in 574

this paper can be found in Appendix VII. The software part of 575

the driving simulator is developed using the Unity 3D Engine.5 576

2) Hardware Components: 577

• VR Headset and Base Stations. The VR Headset and 578

base stations are from HTC Vive Virtual Reality Sys- 579

tem,6 with which drivers can experience driving using 580

controllers and headset tracking with realistic graphics, 581

directional audio, and HD haptic feedback [74]. To make 582

the driving experience more realistic, we replaced the 583

controllers by the steering wheel and car pedals. 584

• Computer. The computer is with Intel Core 585

i5-6500 CPU, 16GB RAM, and Nvidia GeForce 586

GTX1080Ti 11G. Three screen monitors are used to 587

help observe the drivers’ behaviors. 588

• Steering Wheel and Car Pedals. The steering wheel 589

and car pedals are PXN-V3II.7 The wheel has 180-degree 590

rotation and a realistic wheel design, and the pedals are 591

with gas and braking control. 592

• Environments. We deploy the simulator in a quiet room, 593

as shown in Fig. 1(b). 594

B. Driving Simulation Experiments I 595

1) Participants: In driving simulation experiments I, 596

we recruit 12 drivers (6 males and 6 females) Their ages range 597

from 23 to 24 (M = 23.7, SD = 0.471). Their years of driving 598

experiences range from 1 to 5 years (M = 2.58, SD = 1.26). 599

5https://unity.com/
6https://www.vive.com/eu/
7http://www.e-pxn.com/
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Fig. 5. The diagram of the hybrid approach of inductive and deductive analysis. Inductive coding: a bottom up approach where you start with no codes and
develops codes as you analyze the data. Deductive coding: a top down approach where you start with a set of predetermined codes and then find excerpts
that fit those codes.

Fig. 6. View of participants sitting in the simulated car. Note that the enlarged traffic sign is not in the view.

Half of them are local residents relatively familiar with the600

typical traffic violation hotspots, and the other half are non-601

local. Their detailed information can be found in Appendix IV.602

2) Experiment Settings: In the experimental room, a partici-603

pant sits in the seat and wears a VR headset through which the604

participant sees himself/herself sitting in the seat of a virtual605

car (Fig. 6). Before driving, the participant would practice606

controlling the virtual car using the steering wheel and pedals607

with our instructions. In each traffic violation-prone scene,608

the start points for participants are fixed, while the endpoints609

depend on their driving behaviors. The domain of the scene610

is limited to guarantee that the participant would drive across611

the traffic violation hotspot and finish driving in 10 seconds.612

Upon finishing driving in a scene, if the participant violated613

traffic rules, we would ask about the possible reasons for the614

violation. Otherwise, we would inquire about what factors615

in this scene are unfriendly to driving. Then, the participant616

would proceed to the next scene until all scenes have been617

experienced. The order of scenes is random. The participant618

would take a break for 15 minutes after completing five scenes619

and then resume to finish the remaining scenes.620

3) Experiment Results: Three authors conducted reflexive621

thematic analysis on the text of interviews with drivers follow-622

ing the guidelines of [75], detailed in Appendix VI. In general,623

three authors first read through the text independently to get624

familiar with the data. Second, the authors coded the data by625

extracting key phrases or sentences in an inductive manner,626

during which authors discussed and compared their codes to627

refine the codes. Then, the authors reviewed the codes together628

and discussed the code importance and relationships among629

codes to generate key themes. After reviewing the themes by630

all authors, we named and defined the following six key factors631

related to drivers’ traffic violation behaviors.632

a) Blurred signs&markings: Many participants violated 633

traffic rules (5/12) because they failed to see traffic signs and 634

Markings clearly. In S1, all participants claimed that the heavy 635

rain added to their burden when trying to recognize the traffic 636

signs. In S2, fog weather influenced the visibility of traffic 637

signs, making drivers more likely to violate traffic rules (7/12 638

participants complained about the fog). In S4 where traffic 639

violation peaks usually happened during nighttime, most of 640

the participants (9/12) claimed that the illumination there is 641

insufficient and the no-left-turn sign is not very obvious. Two 642

participants turned left illegally there. 643

b) Worn-out markings: Some road lanes are seriously 644

worn-out, leading to marked lanes violations. For example, 645

in S7, participants (5/12) complained that the solid road line 646

had faded, making it look like a skip line. Drivers are thereby 647

very likely to make a marked lanes violation there. 648

c) Occluded signs: Some traffic signs are occluded by 649

trees or other objects, making it difficult for drivers to notice 650

traffic signs quickly or see them clearly. In S5, drivers can 651

only make a U-turn on the far left lane, and there is a U-turn 652

sign on the left for a reminder. However, some participants 653

(3/12) complained that the roadside trees covered the U-turn 654

sign and they did not notice it when they drove through fast. 655

Although some participants (6/12) did not violate the traffic 656

rule there, they still complained about it. 657

d) Overcrowded signs: It is difficult for drivers to timely 658

recognize too many traffic signs in a traffic scene. In S3, 659

four non-local participants complained that there are too many 660

traffic signs, and some have similar meanings. Different from 661

previous studies [31] but consistent with [38], although 8 par- 662

ticipants expressed annoyance about the high vehicle density 663

in S3, none of them thought it would lead to traffic violations. 664

No traffic violation was committed in the experiments. 665

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Xiamen University. Downloaded on October 06,2022 at 05:30:26 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: UNDERSTANDING DRIVERS’ VISUAL AND COMPREHENSION LOADS 9

e) Incompatible signs: Signs are incompatible means that666

their physical arrangement in space is unrelated to or even667

opposite the information or directions conveyed. Although the668

traffic sign and road markings in S6 are in good condition669

and visually apparent, the design of the traffic sign is spatially670

incompatible. Three non-local participants pointed out the671

confusing arrangement of elements in the traffic sign. The text672

“Island Ring South Road” is on the left of the sign, and the673

text “Island Ring Main Road” is on the right of the sign (see674

the enlarged traffic sign in Fig. 6). Drivers may intuitively675

think the left road is “Island Ring South Road” and the right676

road is “Island Ring Main Road”. However, according to the677

arrows, the “Island Ring South Road” is the road on the right,678

and the “Island Ring Main Road” is on the left. Drivers new to679

this area are prone to make mistakes, especially when driving680

at high speed. After realizing they are driving on the wrong681

side, they are likely to cross the solid lines to change lanes682

at the last minute. Even two local participants said they were683

unsatisfied with this sign and had made mistakes there before.684

f) Contradictory signs&markings: Unlike the Incompat-685

ible Signs, signs&markings are contradictory means that the686

information conveyed by these signs or markings is contradic-687

tory. For example, in S8, there is a no-left-turn sign, while688

the road is painted with a dashed line on the left side of689

the lane, meaning that drivers can turn left there. Four out690

of 12 participants pointed out that they were unsure whether691

they could turn left or not there. Similarly, eleven participants692

reported that the new road marking coexisted with the old one693

in S9, making people prone to drive in the wrong lane.694

C. Experimental Traffic Scene Modeling695

For each factor, we model the experimental scenes696

(Appendix VII) for comparison, detailed as follows.697

• Blurred Signs&Markings. Scene S1 has poor clarity.698

We change its weather condition into sunny to model699

S1.1 (experimental scene) with good clarity.700

• Worn-out Markings. The lane marking in scene S7 has701

been worn out, and in the corresponding experimental702

scene, we repaint the worn-out solid line to model S7.1.703

• Occluded Signs. In S5, the traffic sign is covered by704

roadside trees, and in the corresponding experimental705

scene, we remove the trees before the traffic signs to706

model scene S5.1.707

• Overcrowded Signs. In S3, Since many participants708

complained about the high vehicle density but did not709

think it was related to traffic violations, we change710

the vehicle density to smooth to eliminate its influence711

(S3.1). We remove signs with redundant information in712

the corresponding experimental scene (S3.2).713

• Incompatible Signs. Corresponding to S6 with incom-714

patible traffic signs, we change the traffic signs to make715

them more spatially compatible to model S6.1.716

• Contradictory Signs&Markings. Scene S8 has contrary717

traffic facilities, and we change the dashed line into a718

solid line to model S8.1.719

D. Driving Simulation Experiments II720

We conduct comparative experiments to explore the rela-721

tionships between the six unfriendly environmental factors722

concluded above and drivers’ visual and comprehension 723

loads. 724

1) Participants: We recruit 70 drivers (29 males, 725

41 females) with diverse education backgrounds (21 726

have education levels below university, and 49 are with 727

university education or above). Participants’ ages ranged 728

from 23 to 62 years old (M = 36.9, SD = 12.1). Their years 729

of driving experience ranged from 1 to 38 years (M = 7.89, 730

SD = 6.52). Among the participants, 43 are local people 731

familiar with the experimental traffic violation hotspots, and 732

27 are non-local with little knowledge about the hotspots. 733

The detailed information can be found in Appendix V. 734

2) Experiment Settings: Every time participants finish 735

driving in a scene, traffic violations would be recorded. Partic- 736

ipants would rate their Visual Load and Comprehension Load 737

on a 5-point Likert scale (1 strongly disagree - 5 strongly 738

agree) questionnaire as follows. Other settings and procedures 739

are the same as the driving simulation experiments I. 740

• It is difficult for me to see traffic signs/road markings in 741

the scene clearly while driving. 742

• It is difficult for me to understand the meaning of traffic 743

signs/road markings in the scene while driving. 744

3) Experiment Results: The detailed experiment results can 745

be found in Appendix V. We conduct statistical analysis on 746

the experiment results, as shown in TABLE III. 747

Based on the results, we find that participants com- 748

mit fewer traffic violations in experimental scenes (with 749

unfriendly environmental factors improved) than in control 750

scenes (with unfriendly environmental factors). The Blurred 751

Signs&Markings caused by environmental conditions (e.g., 752

bad weather or low illumination) indicate an increase in 753

drivers’ visual load for detecting traffic signs. The Worn-out 754

Markings indicate a higher visual load for road markings. The 755

Occluded Signs add to drivers’ visual load for traffic signs, 756

depending on the extent to which the signs have been blocked 757

by other objects, such as roadside trees, telegraph poles, and 758

other traffic signs. The Overcrowded Signs increase drivers’ 759

comprehension load for differentiating relevant traffic signs, 760

which is influenced by the number of traffic signs in a traffic 761

scene, especially for drivers unfamiliar with the road. The 762

Incompatible Signs indicate a higher drivers’ comprehension 763

load for traffic signs. The Contradictory Signs&Markings indi- 764

cate a greater demand for drivers’ comprehension resources as 765

they may confuse drivers. 766

We further conduct Wilcoxon Signed Ranks Test [76] for 767

statistical significance. The results are shown in TABLE III, 768

we find the Blurred Signs&Markings, Worn-out Markings, 769

Occluded Signs are significantly related to the visual and 770

comprehension loads. If a scene had poor visibility, its compre- 771

hensibility would be impaired since people often have trouble 772

making sense of things that they could hardly see, leading to 773

both high visual and comprehension loads. The Contradictory 774

Signs&Markings, Incompatible Signs, and Overcrowded Signs 775

are significantly related to comprehension load but not signif- 776

icantly related to visual load. Based on the above discussion, 777

we derive six indicators for drivers’ visual and comprehension 778

loads related to traffic violations, as shown in TABLE IV. 779
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TABLE III

THE STATISTICAL ANALYSIS RESULTS FOR DRIVING SIMULATION EXPERIMENTS II (70 PARTICIPANTS)

TABLE IV

INDICATORS FOR VISUAL AND COMPREHENSION LOADS IN TRAFFIC VIOLATION HOTSPOTS

Fig. 7. The explainable model for visual and comprehension diagnosing in traffic scenes.

VI. LOAD DIAGNOSING FOR TRAFFIC SCENES780

In this section, we build an explainable diagnosing model781

based on the indicators to automatically estimate drivers’782

visual and comprehension loads in traffic scenes.783

A. Explainable Diagnosing Model784

Image-based traffic scenes can be collected by mobile785

devices or from crowdsensing platforms, such as Baidu786

Panoramas.8 As shown in Fig. 7, for traffic scenes, a road787

marking detector based on Mask R-CNN [77] is trained to788

detect road markings and worn-out road markings. A traffic789

sign detector based on YOLOv4 [78] is used to detect traf-790

fic signs, arrows in indication signs, and traffic signs with791

occlusion.792

The detection results are input into 6 evaluators to get793

6 scores for 6 indicators correspondingly. Suppose the traffic794

facilities detected in the scene are F1, F2, . . . , Fa (traffic795

signs and markings in normal condition), W1, W2, . . . , Wb796

(worn-out road markings), O1, O2, . . . , Oc (occluded traf-797

fic signs), and A1, A2, . . . , Ad (arrows in indication798

signs). We use {CF1, CF2, . . . , CFa}, {CW 1, CW 2, . . . , CW b},799

{CO1, CO2, . . . , COc}, and {CA1, CA2, . . . , CAd } to denote the800

sets of confidence values of traffic signs and markings in801

8https://quanjing.baidu.com/

normal condition, worn-out road markings, traffic signs with 802

occlusion, and arrows in indication signs, respectively. The 803

evaluators are detailed as follows. 804

• Blurred Signs&Markings. The blurriness of traffic 805

signs&markings influences their probabilities of being 806

detected. We use the confidence values to estimate the 807

scores for Blurred Signs&Markings. The score is deter- 808

mined by the blurriest traffic signs&markings in normal 809

conditions, i.e., the minimum values among CF1, CF2,…, 810

CFn . A lower blurring score means a higher blurring 811

degree of the traffic signs&markings. 812

• Worn-out Markings. a higher the confidence value of 813

the detected worn-out marking means a higher prob- 814

ability of an actual worn-out marking. The Worn-out 815

Markings scores are determined by the most worn-out 816

road markings in scenes, i.e., the minimum values among 817

1 − CW 1, 1 − CW 2, . . . , 1 − CW b. A lower score means a 818

higher wearing degree of the road markings in the scene. 819

If there is no worn-out road marking, the score is one. 820

• Occluded Signs. Similar to the Worn-out Markings, the 821

Occluded Signs score is determined by the most occluded 822

traffic Signs in the scene, i.e., the minimum values among 823

1 − CO1, 1 − CO2, . . . , 1 − COc. A lower score means a 824

higher occlusion degree of the traffic signs in the scene. 825

If there is no traffic sign occluded, the score is one. 826
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• Overcrowded Signs. The score for Overcrowded Signs827

is determined by the number of normal condition traf-828

fic signs detected weighted by their confidence values829

and normalized into [0, 1], i.e., 1 − (
∑a

i=1 CFi )/10.830

If (
∑a

i=1 CFi )/10 > 1, the score is set to 0. A lower831

score means more crowded signs.832

• Incompatible Signs. The score for Incompatible Signs is833

determined by the most incompatible arrow arrangement834

of indicator signs in the scene. For every pair of arrows in835

the same indicator sign, we first check whether they are836

compatible according to their locations and types. If they837

(Ai , A j ) are incompatibility (e.g., left and right arrows838

with up and down arrangement), their incompatibility839

score is 1 − CAi × CAj . The incompatibility score of840

the scene is the minimal value among the incompatibility841

pairs. A lower score means a more incompatible scene.842

If there is no incompatible pair, the score is one.843

• Contradictory Signs&Markings. The score for Contra-844

dictory Signs&Markings is determined by the most con-845

tradictory traffic signs&markings in the scene. For every846

pair of contradictory traffic signs&markings (Fi ,Fj ) in847

the scene (e.g., no left turn signs and left turn road848

markings, no u-turn signs and u-turn signs), their score849

is 1 − CFi × CF j . The score of the scene is the minimal850

value among the contradiction scores of the contradictory851

pairs. A lower score means a more contradictory scene.852

If there is no contradictory pair, the score is one.853

A classifier is trained based on the scores for load indicators854

to classify traffic scenes into traffic violation-prone and non-855

traffic violation-prone scenes. Here we use XGBoost [79] since856

it is efficient and can give the importance of features.857

B. Evaluation858

1) Datasets: The datasets for training the traffic sign and859

marking detectors and model evaluation include:860

Traffic Sign Dataset. The Traffic Sign Dataset is from [80],861

including 100,000 images containing 30,000 traffic-sign862

instances. Furthermore, we annotate 400 occluded traffic signs863

and 587 arrows in indication signs (including 259 left arrows,864

329 right arrows, 144 up arrows, and 88 down arrows).865

Road Marking Dataset. The Road Marking Dataset is866

from [81], including lanes (25,354 single white, 74,733 dashed867

white, 206 double white, 28,054 single yellow, 5,734 dashed868

yellow, and 8,998 double yellow) and arrows (1,186 left,869

537 right, 6,968 straight, and 127 u-turn). Furthermore,870

we annotate 400 worn-out road markings.871

Traffic Scenes. Fifty traffic violation-prone scenes and872

50 non-traffic violation-prone scenes are used to evaluate the873

performance of the load diagnosing model. The traffic scenes874

are street view images collected from Baidu Panoramas whose875

data are uploaded by the company or the crowd, and we876

augment their contexts using Adobe Photoshop.877

2) Baseline Methods: We compare our method with various878

baseline methods. We separate the 100 traffic scenes into a879

training set (70%), validation set (10%), and test set (20%).880

In order to achieve a fair comparison, we make sure that the881

three sets and parameters used in each method are the same.882

Fig. 8. The ROC curves of the classification performance of the proposed
diagnosing model and baseline methods.

CNN is an end-to-end classifiers with convolutional neural 883

networks [82]. It can directly extract features from images. 884

Conv + XGBoost extracts features from images using 885

convolutional layers, but different from CNN which does 886

classification using the fully connected layer, the extracted 887

features are used to train a XGBoost classifier. 888

CNN + ImageNet is an end-to-end classifiers with convo- 889

lutional neural networks fine-tuned from pre-trained weights 890

on ImageNet [83]. 891

3) Results: We use the ROC curve [84] to evaluate the 892

performance of the proposed model and baseline methods on 893

the test set, as shown in Fig. 8. CNN did not perform well, and 894

Conv + XGBoost performed better than CNN, which may 895

be resulted from insufficient training data. The deep-learning- 896

based method usually requires a large amount of training data 897

to achieve high performance, and thus transfer learning [85] 898

is proposed to improve the performance on small datasets. 899

CNN + ImageNet leveraged the weights pre-trained on Ima- 900

geNet and achieved the best performance, which indicates the 901

feasibility of identifying traffic violation-prone scenes based 902

on traffic scene images. The proposed diagnosing model not 903

only achieves comparable good performance with an AUC 904

of 0.90 but also can present the load profiles to explain the 905

potential causality of traffic violation-prone scenes. 906

C. Case Studies 907

1) A Marked Lane Violation Hotspot: As shown in Fig. 9, 908

it is a traffic violation hotspot with frequent marked lane 909

violations. The traffic scene has a poor traffic lane condition, 910

increasing drivers’ visual load and achieving a low score in 911

Worn-out Markings. The worn-out lane detected used to be 912

a solid white line that drivers are not permitted to press this 913

line and change the driving lane. However, since the traffic 914

lane is seriously worn-out, drivers are very likely to regard it 915

as a dashed line or overlook it, and thus commit marked lane 916

violations. Besides, the street view image has low resolution, 917

and there is a no-right-turn sign in the distance, leading to 918

some loss in the Blurred Signs&Markings score. 919

2) An Illegal Turning Violation Hotspot: Fig. 10 shows a 920

traffic violation hotspot with frequent illegal turning viola- 921

tions. The traffic scene gets low scores in Occluded Signs 922

and Overcrowded Signs. There is a no-right-turn traffic sign 923

occluded by the streetlight pole, and a no-access sign occluded 924

by trees, increasing the visual load. Moreover, there are many 925

traffic signs, increasing the comprehension load in terms of 926
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Fig. 9. A traffic violation hotspot caused by worn-out road markings. (a) The street view image of the scene with detection results. (b) The visual
comprehension load profile.

Fig. 10. A traffic violation hotspot caused by occluded signs and overcrowded signs. (a) The street view image of the scene with detection results. (b) The
visual comprehension load profile.

Overcrowded Signs. Specifically, the street view image is927

downloaded from Baidu Panorama, and the first traffic sign928

on the second row of the green signboard is automatically929

masked by Baidu Panorama. Similar to the first case, the930

low resolution of the picture influences the score of Blurred931

Signs&Markings.932

VII. DISCUSSION933

A. Generalizability934

Compared with many existing driving simulators, our935

driving simulator is cheaper, enhancing the generalizability936

of our work. Point clouds are getting more accessible to937

the general public since more and more mobile devices are938

equipped with LiDAR, such as iPad Pro and iPhone [55]. The939

software part of the driving simulator is developed using the940

open-source Unity 3D Engine, and the hardware part consists941

of devices on sale to the public and popular in VR Games.942

Besides, given more indicators, the diagnosing model can943

be easily extended since the detectors and evaluators in the944

model are independent of each other. For example, besides945

the road marking and traffic sign detectors, new detectors,946

such as a road condition detector, can be added to the model.947

New evaluators can also be easily added to get scores for new948

indicators. Then, the load profile and classifier can be updated949

with new features based on the new indicators.950

Furthermore, our work also provides implications for other951

areas, such as transportation facility maintenance and driving952

assistance systems. For example, if a traffic scene gets a953

low score in Overcrowded Signs, the authority can remove954

the redundant signs in this scene to improve the score. The955

diagnosing model can be embedded into driving assistance956

systems to raise awareness about the potential risk factors in957

various traffic scenes.958

B. Limitations and Future Work 959

In traffic violation hotspot modeling, we model the typical 960

traffic violation hotspots based on real-world traffic violation 961

data. However, since the traffic violation data are only from 962

Xiamen City which has a tropical oceanic monsoon climate 963

and no snowy or dusty days, the weather contexts we can 964

explore are limited. Besides, although the typical hotspots 965

selected are representative, there may still be some missing 966

types due to the limited data. In the future, we can collect data 967

from other cities with different climatic conditions, validate 968

the current selected typical hotspots and obtain more typical 969

hotspots by crowdsensing. 970

In the scene-based visual and comprehension load study, 971

to explore the environmental indicators for the general public, 972

we recruit drivers from various age groups and binary gender, 973

and the experiments are conducted in a quiet room without 974

interference from individuals’ emotional status (e.g., anger) 975

or contexts (e.g., rushing to work). However, this sample 976

may still lack demographic diversity in terms of race and 977

personality. The derived six indicators may not adequately 978

reflect all unfriendly environmental factors in a traffic scene. 979

To address this issue, we can recruit more drivers with different 980

backgrounds to experience driving using the simulator and 981

extend indicators based on their opinions. 982

Besides, we directly use the comprehensibility and visibility 983

of traffic facilities in traffic scenes to represent the com- 984

prehension and visual load added to drivers. Although it is 985

more cost-effective and intuitive, it may introduce bias. In the 986

future, we may also use specialized equipment or standardized 987

rating scales to measure drivers’ workload to validate the 988

effectiveness of the designed questionnaire. 989

In load diagnosing for traffic scenes, we build a diagnosing 990

model based on the derived six indicators to automatically 991

estimate drivers’ visual and comprehension loads in various 992
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traffic scenes. Although the current diagnosing model achieves993

good performance, its explainability can be further improved994

by considering more indicators. Also, the model can only ana-995

lyze a traffic scene with images, and the scores are estimated996

based on traffic sign and marking detectors, while the texts in997

traffic signs also play an important role. We can incorporate998

other literacies such as texts and audio to build a multimodal999

model [86] to further improve the explainability.1000

VIII. CONCLUSION1001

In this work, we propose a three-phase framework to1002

derive indicators for drivers’ visual and comprehension loads1003

related to traffic violations and build an explainable diagnosing1004

model. First, we extract traffic violation hotspots from traffic1005

violations and select representative typical hotspots. Second,1006

we model the typical traffic violation-prone scenes based on1007

the point clouds and traffic environment data. Third, we build1008

a driving simulator, recruit drivers with various backgrounds to1009

experience driving in various traffic scenes, and derive drivers’1010

visual and comprehension load indicators based on drivers’1011

feedback. Finally, we build a diagnosing model based on the1012

indicators to automatically estimate loads in traffic scenes and1013

evaluate the model using real-world datasets.1014
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