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Abstract—Many countries around the world are facing a
shortage of healthcare resources, especially during the post-
epidemic era, leading to a dramatic increase in the need for
self-detection and self-management of diseases. The popularity of
smart wearable devices, such as smartwatches, and the develop-
ment of machine learning bring new opportunities for the early
detection and management of various prevalent diseases, such
as cardiovascular diseases, Parkinson’s disease, and diabetes.
In this survey, we comprehensively review the articles related
to specific diseases or health issues based on small wearable
devices and machine learning. More specifically, we first present
an overview of the articles selected and classify them according
to their targeted diseases. Then, we summarize their objectives,
wearable device and sensor data, machine learning techniques,
and wearing locations. Based on the literature review, we discuss
the challenges and propose future directions from the perspec-
tives of privacy concerns, security concerns, transmission latency
and reliability, energy consumption, multi-modality, multi-sensor,
multi-devices, evaluation metrics, explainability, generalization
and personalization, social influence, and human factors, aiming
to inspire researchers in this field.

Index Terms—Wearable devices, smart watches, physical
health, machine learning, disease diagnoses.

I. INTRODUCTION

VARIOUS chronic diseases, such as cardiovascular dis-
eases, Parkinson’s disease, and diabetes, can be early de-

tected and managed by continuous and real-time monitoring of
patients’ vital signs [1]. Numerous people around the world are
suffering from these diseases, which have adversely influenced
patients’ well-being and imposed heavy burdens on healthcare
providers. In particular, the worldwide pandemic, coronavirus
disease 2019 (COVID-19), has brought great challenges to
clinical care [2]. Medical institutions have to deal with more
patients with less staff, and healthcare resources are quite
limited during pandemic periods. The effect can last for a long
time in the post-epidemic era, especially in many developing
countries [3], [4]. Upon this basis, it is important to facilitate
the self-detection and self-management of chronic diseases.
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In recent years, wearable devices (e.g., smart watches, smart
rings, and smart glasses) are getting more and more popular
all around the world. Multiple sensors, such as accelerometers,
gyroscopes, and heart rate sensors, have been integrated into
small wearable devices, making it feasible to continuously
monitor various physiological data of users in real time. By
analyzing these health-related data, many chronic diseases can
be detected at an early stage, and patients’ conditions can be
assessed. In tradition, this kind of analysis should be conducted
by educated specialists, which is costly and inconvenient.
Fortunately, the advance in artificial intelligence, especially
machine learning, has significantly enhanced the effectiveness
and efficiency of healthcare applications for wearable devices,
providing personalized healthcare guidance for users without
prior knowledge.

There have been numerous works on healthcare based on
wearable devices and machine learning. Many of them focus
on human activity recognition to record users’ physical activi-
ties and calories burned, encouraging a healthier lifestyle. Vital
signs, such as pulse rate and body temperature, are sensed and
visualized for reference. Specifically, in this survey, we focus
on the papers that are related to specific diseases or health
issues rather than generally monitoring or visualization of
physiological information, which can directly benefit the early
detection and management of chronic diseases for patients.

Previous surveys of wearable device applications in health-
care that related to specific diseases or health issues based on
artificial intelligence usually only focus on a single disease.
For example, Koumpouros et al. [5] reviewed the literature on
the detection of autism spectrum disorders (ASD) using wear-
able and mobile devices. Channa et al. [6] discussed works
on COVID-19 symptom diagnoses using wearable devices.
Pereira et al. [7] reviewed works on atrial fibrillation de-
tection based on Photoplethysmography (PPG). Furthermore,
previous surveys usually include a wide range of wearable
devices, while some large portable devices (e.g., backpacks)
and professional instruments (e.g., blood pressure meters) are
not pervasive enough. In this survey, we comprehensively
reviewed the research articles for specific diseases or health
issues based on more prevalent small wearable devices (e.g.,
smart watches) and machine learning, and present an overview
of the articles selected. We classify them according to their
corresponding disease types, summarize the disease categories
that have received the most attention (i.e., Parkinson’s Disease,
Cardiovascular Diseases, Sleep Issues, Diabetes, Respiratory
and Pulmonary Diseases), and also discuss those in the mi-
nority (i.e., Epileptic Seizure, Frailty Syndrome, Sarcopenia,
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and Abdominal Aortic Aneurysm). For each selected study,
we present their objectives, wearable devices and sensor data,
and machine learning methods used. It is a promising area
undergoing an increase currently and in the coming years.
Furthermore, based on the review, we discussed the challenges
and future directions, showing that although current works
have achieved great success, there are still many issues to
be addressed. New research opportunities can be found by
exploring these issues.

The remainder of this paper is organized as follows. Section
II introduces the method used for paper searching and the
criteria for paper selection. We also presented a brief summary
of the related papers in this section. Then, in Section III, we
generally introduce the machine learning algorithms frequently
used in the reviewed papers. Subsequently, in Section IV, we
classify the reviewed papers according to their corresponding
diseases and elaborate on their objectives, related wearable
devices and sensor data, and machine learning algorithms.
Finally, we discuss the challenges and future directions in
Section V and conclude our survey in Section VI.

II. METHODS

For the literature review, we used the Web of Science Core
Collection database. The initial literature search was conducted
on the 15th of December 2022 using the search string (”smart
watches” OR ”smart wearables” OR ”smart watch” OR ”wear-
able devices”) AND (”health” OR ”disease” OR ”healthcare”)
AND (”machine learning” OR ”deep learning”). Only research
articles and proceeding papers (including early access) written
in English were included. This resulted in 602 papers. As
shown in Fig. 1, there is no result before 2015, and the number
of papers drastically increases after 2018. It should be noted
that some papers accepted or published in 2022 may not have
been included in the database. Thus, the number of papers
is slightly fewer than that in 2021. According to the Web
of Science categories (TABLE I), most of the papers belong
to Engineering Electrical Electronic and Computer Science
Information Systems. TABLE II summarizes the distribution
across countries or regions, showing that The United States,
China, and India have published the most papers.

In general, identifying the types and intensities of users’
physical activities automatically is a fundamental function of
many wristbands. Among these papers, many of them stud-
ied human activity recognition [8]–[13] since the amount of
physical activities is an important health indicator [14]. There
are also many works on health monitoring systems. Various
sensors embedded on wearable devices, such as accelerometer,
gyroscope, and PPG sensor, were leveraged to collect users’
physiological signals to proactively monitor their health status
to avoid serious diseases [15]–[17] and facilitate rehabilitation
of patients [18], [19]. Besides, some researchers proposed to
estimate stress [20]–[22], detect mood disorders [23], [24],
predict depression [25]–[27], etc., to measure users’ mental
health using wearable devices [28]–[30]. In this work, we
focus on specific physical health issues, and the definition
of wearable devices is limited to small devices that are not
permanently fixed to the body. More specifically, we further
selected the papers based on the following criteria.

Fig. 1. The number of relevant papers across years.

TABLE I
WEB OF SCIENCE CATEGORIES WITH MORE THAN 10 PAPERS. ONE PAPER

CAN BE CLASSIFIED INTO MORE THAN ONE CATEGORY.

Web of Science Categories Count %

Engineering Electrical Electronic 206 34.2%
Computer Science Information Systems 149 24.8%
Telecommunications 97 16.1%
Computer Science Theory Methods 95 15.8%
Engineering Biomedical 93 15.4%
Computer Science Artificial Intelligence 88 14.6%
Computer Science Interdisciplinary Applications 82 13.6%
Medical Informatics 73 12.1%
Instruments Instrumentation 68 11.3%
Health Care Sciences Services 48 8.0%
Chemistry Analytical 43 7.1%
Physics Applied 31 5.2%
Mathematical Computational Biology 29 4.8%
Computer Science Software Engineering 23 3.8%
Computer Science Cybernetics 21 3.5%
Computer Science Hardware Architecture 21 3.5%
Automation Control Systems 18 3.0%
Engineering Multidisciplinary 16 2.7%
Materials Science Multidisciplinary 11 1.8%
Multidisciplinary Sciences 11 1.8%
Neurosciences 11 1.8%
Public Environmental Occupational Health 11 1.8%

TABLE II
COUNTRIES WITH MORE THAN 10 PAPERS. ONE PAPER CAN BE

CLASSIFIED INTO MORE THAN ONE COUNTRY.

Countries Count %

The United States 144 23.9%
China 130 21.6%
India 72 12.0%
Italy 54 9.0%
England 50 8.3%
South Korea 40 6.6%
Spain 27 4.5%
Australia 26 4.3%
Canada 24 4.0%
Japan 23 3.8%
Saudi Arabia 21 3.5%
Singapore 20 3.3%
Switzerland 19 3.2%
Germany 16 2.7%
Greece 13 2.2%
Turkey 13 2.2%
United Arab Emirates 12 2.0%
Finland 11 1.8%
Pakistan 11 1.8%

Criterion 1. Three Key Components. Only those papers
directly related to smart wearable devices, machine learning,
and physical health were included.
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Fig. 2. The distribution of articles across years with regard to traditional
machine learning, deep learning, and both traditional machine learning and
deep learning.

Criterion 2. The Coverage of Wearable Devices. Wearable
devices in this paper refer to small devices that are not
permanently fixed to the body and have a function as wearable.
We excluded large portable devices such as backpacks used to
carry around and larger unwearable devices.

Criterion 3. The Coverage of Health Issues. The papers
on system design or assisting in sports and training without
targeting any specific disease or health issue were excluded.
The papers on mental health were also excluded.

Based on the above criteria, we selected 78 articles and
further classified and analyzed them in terms of the targeted
diseases, the machine learning methods used, and their main
conclusions. Fig. 2 shows the distribution of articles across
years with regard to different categories of machine learning
techniques (i.e., traditional machine learning, deep learning,
and both traditional machine learning and deep learning).
We can find that the number of articles using deep learning
techniques is increasing. This can result from the increasing
popularity of deep learning techniques. Meanwhile, there are
still many articles using traditional machine learning methods,
since traditional methods are usually more effective than
deep learning methods when the amount of data is limited,
especially in the healthcare domain.

III. MACHINE LEARNING TECHNIQUES

The popularity of the use of machine learning (ML) has
grown over the past decades. ML allows computers to make
use of statistical techniques to learn and improve tasks after
seeing data and gaining experience. Rather than being specif-
ically programmed for certain actions, the systems can train
themselves by recognizing patterns in the data. ML can be
considered a subfield of Artificial Intelligence (AI).

AI focuses on the simulation of human intelligence in
machines to perform tasks that normally require human intel-
ligence [31]. In general, it can be divided into the following
two categories [32]:

• Narrow AI, also known as Weak AI, is designed to
perform specific tasks, such as face recognition or rec-
ommendation systems. Most of the existing AI systems
belong to this category.

• General AI, also known as Strong AI, refers to the
systems that have generalized human cognitive abilities.

They have the ability to understand, learn, adapt, and
implement knowledge in different domains.

ML is a significant subset of AI, where machines learn and
improve from experience or data [33]. ML models learn to
identify patterns based on the provided data (i.e., training data)
to make predictions with new data. This ability to learn from
data makes ML apart from traditional rule-based approaches
[34]. There are some basic key concepts in ML [35]:

• Features and Labels. In a dataset for ML, features are
input variables, and labels are the corresponding outputs
that the model aims to predict.

• Training and Testing: To build an ML model, the dataset
is typically split into training and testing sets. The training
set is used to train the model, and the testing set is used
to evaluate the performance of the trained model.

• Overfitting and Underfitting: Overfitting occurs when
a model performs very well on the training data but
fails to generalize to testing data. Underfitting means a
machine learning model is unable to capture the under-
lying patterns of the data, failing to achieve satisfactory
performance on both training and testing data.

• Evaluation Metrics: Various metrics are used to eval-
uate the ML model performance for different tasks. In
classification tasks, metrics such as accuracy, precision,
recall, and F1 score, are usually used. In regression tasks,
metrics such as mean absolute error, mean square error,
root mean squared error, and R2 score, are usually used.

ML algorithms have been used in a wide variety of applica-
tions, such as email filtering and computer vision [36]. It has
also achieved great success in disease diagnoses [37]. Within
ML, we distinguish between traditional machine learning and
deep learning approaches. Compared with traditional machine
learning, deep learning usually requires a larger amount of data
and more computing power for training. Whereas traditional
machine learning usually requires more domain expertise and
effort in feature engineering, deep learning uses artificial
neural networks to mimic the learning process of humans and
requires less human intervention. With sufficient data and com-
puting power, deep learning can learn complex correlations
and has been applied to various domains. However, traditional
machine learning approaches are easier to understand and
explain. Many deep learning models are “black box” models,
meaning that we do not know how the models make decisions.

Furthermore, the explainability of machine learning models
is of vital importance in health-related studies. Firstly, in-
creased model explainability makes the decision-making pro-
cess more transparent, increasing the soundness and reliability
of the decisions. Secondly, increased explainability supports
the identification of risk factors in medical studies, which can
greatly benefit the improvement of people’s health.

Among the 78 articles selected in this survey, there are
33 articles using traditional machine learning approaches,
32 articles using deep learning approaches, and 13 articles
using both traditional machine learning and deep learning
approaches, as shown in Fig. 3. However, only one article
[38] among them considered the explainability of models.

In this section, we introduce the popular traditional machine
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Fig. 3. The distribution of techniques used in the selected papers.

learning and deep learning methods used in disease diagnoses
and further discuss the explainability of machine learning.

A. Traditional Machine Learning

For traditional machine learning, we discussed the following
algorithms frequently used with data collected from smart
wearable devices in disease diagnoses: Support Vector Ma-
chine, Discriminant Analysis, Naı̈ve Bayes, K-Nearest Neigh-
bors, tree-based methods, logistic regression, k-Means, and
Hidden Markov Model.

The Support Vector Machine (SVM) algorithm optimizes
the separation boundary (hyperplane) in n-dimensional space
between feature values of different classes. The separation
boundary can be a single straight line, in Linear SVM, or
a non-linear line in Non-Linear SVM. SVM can be used for
both classification and regression tasks. The training process
involves solving an optimization problem as follows:

Problem: (Support Vector Machine)

minimize
1

2
||w||2 + C

n∑
i=1

max(0, 1− yi(w
Txi + b))

(1)

subject to ∀i, yi(wTxi + b) ≥ 1,

where w represents the weight vector; n is the number of
training samples; b is the bias; xi and yi are the input data
vector and corresponding label, and C is a regularization
parameter. The time complexity is typically between O(dn2)
and O(dn3), where d is the number of features, depending on
the implementation and kernel functions used.

In Discriminant Analysis (DA), we use a discriminant func-
tion to classify groups based on a set of numerical variables. In
two-group discriminant analysis, i.e., when we only have two
categories, this boils down to a linear regression function with
an outcome variable that can take values zero and one depend-
ing on the category (i.e., a dummy variable). In multiple-group
discriminant analysis, we have several discriminant functions
to narrow down the outcome variable to a specific class. Linear
Discriminant Analysis (LDA) finds a linear combination of
features that maximizes the separation between classes, while
Quadratic Discriminant Analysis (QDA) extends LDA by al-
lowing quadratic decision boundaries. Training LDA and QDA
involves computing covariance matrices and solving linear
equations. The time complexity for training is approximately
O(nd2) for LDA and O(nd3) for QDA.

Naive Bayes (NB) is a probabilistic classifier based on
Bayes’ theorem. The probability of a certain class depends
on the probability of a set of features occurring in a class in a
training data set. NB assumes, however, independence between

the features. There are many different variants of NB, which
may be suitable depending on the type of data at hand. The
posterior probabilities of each class given the input features
using Bayes’ theorem are calculated as follows:

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
, (2)

where P (Ci|x) is the posterior probability of class Ci given
the input x, P (x|Ci) is the likelihood of x given class
Ci, P (Ci) is the prior probability of class Ci, and P (x)
is the evidence probability. Training an NB model involves
estimating class priors and likelihood probabilities. The time
complexity is typically linear, approximately O(nd).

The k-Nearest Neighbors (KNN) algorithm is used to
predict the target value based on the nearest k number of
neighbors in the training dataset. For k = 1, this simply boils
down to the one nearest neighbor. For k > 1, the classifier
chooses the class that is most present in the k number of
neighbors in the training dataset. Similarly, KNN can be used
for regression tasks, where the classifier takes the average
of the k nearest neighbors. The computational complexity of
KNN is influenced by the number of training samples n and
the number of features d. Building the KNN model involves
indexing the training data, which has a time complexity of
approximately O(ndlog(n)). Making predictions with KNN
has a time complexity of approximately O(dn).

Tree-based methods are popular in classification tasks
within smart healthcare but can be used for regression tasks
as well. There are many different tree-based methods, starting
from a single decision tree (DT), which splits branches at
different feature values to combine different combinations of
feature values to match patterns in the output. The computa-
tional complexity depends on the depth of the trees and the
number of training samples n. Constructing a decision tree
typically has a time complexity of O(ndlog(n)), where d is
the number of features. Random Forests (RF) combine and
average over a larger set of trees to improve the performance
of the algorithm. Several extensions exist, such as bagging
and gradient boosting. Random Forests train multiple decision
trees in parallel, resulting in a higher computational complex-
ity compared to individual decision trees.

For the classification of a positive vs. negative diagnosis
or for estimating the probability of an event to occur, logistic
regression (LR) is a traditional technique that has often been
used. Although it is a regression-based technique, it can
be used for classification tasks where the outcome can be
classified based on a probability of occurrence. It models the
relationship between the input features and the probability of
belonging to a particular class using a logistic function. The
algorithm estimates the parameters of the logistic regression
model by maximizing the likelihood function. The logistic
regression model uses the logistic function to model the
probability of the positive class:

P (y = 1|x) = 1

1 + e−wT x
, (3)

where wTx represents the linear combination of input features
x and corresponding weights w.
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Clustering methods are used to detect patterns and sim-
ilarities to form clusters. Clustering has many similarities
to classification, with the biggest difference being that it is
an unsupervised learning approach, and thus no output data
is available in training. The use of unsupervised learning
approaches is not very common in the analysis of data from
smart wearable devices in healthcare. Instead, often a diagnosis
is made by a doctor to create an output in the training dataset.

The most traditional example of a clustering approach is
k-means clustering, in which the observations are divided into
k clusters. Each observation belongs to the cluster to which
it is closest to the mean of that cluster, where the mean of
the cluster is determined such that the within-cluster variances
between the observations are minimized. The algorithm itera-
tively minimizes the within-cluster sum of squared distances
to converge to a locally optimal solution as follows:

1) Initialize k cluster centers randomly.
2) Assign each data point to the nearest center based on

the distance (e.g., Euclidean distance).
3) Update the centroids by computing the mean of the

assigned data points for each cluster.
4) Repeat steps 2) and 3) until convergence, which occurs

when the centers no longer change significantly or a
maximum number of iterations is reached.

The time complexity is approximately O(Inkd), where I
is the number of iterations required for convergence; n the
number of data points, andd is the number of features.

Another method for clustering is the Hidden Markov Model
(HMM), a probabilistic approach based on unknown (hidden)
feature values. The objective of an HMM is to learn the states
of the features by observing a sequence of outcome values.
HMMs are used mainly for sequential data.

B. Deep Learning

Artificial Neural Networks (ANN) form the basis of Deep
Learning, a subfield of machine learning. ANNs can be used
for both classification and regression tasks and are particularly
suitable for non-linear relationships (regression) and non-linear
decision boundaries (classification). The input data is passed
through hidden layers with different weights, as well as an
activation function that allows for non-linear patterns and
complex relationships in the data to be discovered. A common
type of ANN is the Multilayer Perceptron (MLP), a fully
connected feedforward neural network. It consists of at least
three layers, including an input layer, a hidden layer, and an
output layer. It utilizes back-propagation for training. Each
neuron in an MLP is a basic processing unit that computes
a weighted sum of its inputs, applies an activation function
to introduce non-linearity, and passes the output to the next
layer. The equation for the output of a neuron in an MLP can
be represented as follows:

y = f(w1x1 + w2x2 + ...+ wnxn + b), (4)

where y is the output; x1, x2,..., xn are the input values; w1,
w2,..., wn are the corresponding weights, and b is bias; f is
the activation function.

Another commonly used type of neural network (NN) is
the Convolutional Neural Network (CNN). It is a regularized
MLP. The hidden layers of CNN usually include convolu-
tional layers, pooling layers, and fully-connected layers. In
convolutional layers, a kernel is used to generate convolved
features based on the input from the previous layer, and the
features are transmitted to the next layer. The main equation in
a convolutional layer of a CNN is the convolution operation,
which applies a set of learnable filters to the input image:

C[i] = f [
∑

(W [k] ∗X[i− k])], (5)

where C[i] represents the output feature map at position i, f
is the activation function, W [k] is the weights of k-th filter,
X[i − k] represents the input patch with the center i, and ∗
denotes the convolution operation. The pooling layers are used
to reduce the parameters and prevent over-fitting. In a fully-
connected layer, every neuron is connected to every neuron in
another layer. CNNs can recognize spatial patterns of data and
have achieved great performance, especially on image data.

Recurrent Neural Network (RNN) is another class of ANN,
which is usually used for sequence data such as time series
data, text, and audio. The circles in RNNs mean that the output
from some neurons can influence the input of these neurons.
In this way, RNNs can learn the temporal dependency of input
sequence data. The main equation in an RNN is the recurrent
connection, which updates the hidden state at each time step:

h[t] = f(Wh · h[t− 1] +Wx · x[t] + b), (6)

where h[t] is the hidden state at time t, x[t] is the input at
time t, Wh represents the recurrent weights, Wx represents the
input weights, b is bias, and f is the activation function. When
training an RNN with many layers, vanishing and exploding
gradient problem often occurs. Long Short-Term Memory
Networks (LSTMs) are a type of RNNs that can address this
problem. LSTMs have memory blocks connected into layers.
Gates, including forget gate, input gate, and output gate, are
used to manage the state and output of blocks in LSTMs.
Gated Recurrent Units (GRUs) are a gating mechanism in
RNNs. It updates the gate and resets the gate. Compared with
LSTMs, GRUs require fewer parameters and are usually faster.

Based on the above-discussed networks, there are numerous
extensions, such as Bidirectional LSTM (BiLSTM), ResNet,
Seq2Seq, and Generative Adversarial Network (GAN). These
novel deep-learning networks usually require a large amount of
data and computing resources and have achieved great success.
However, healthcare study usually has limited data, and small
wearable devices have limited computing power, which brings
new challenges and opportunities.

C. Explainability

The explainability of ML has gained more and more atten-
tion. However, although ML has achieved great performance
in disease diagnoses, most of the current works lack the
discussion on the explainability of their models. Generally,
the methods for explaining the ML models can be classified
into global model-agnostic and local model-agnostic [39]. The
global model-agnostic methods include Partial Dependence
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Plot (PDP), Permuted Feature Importance, and Global Sur-
rogate. The local model-agnostic methods include Individual
Conditional Expectation (ICE), Local Surrogate (LIME), and
Shapley Additive explanations (SHAP) [40].

The Partial Dependence Plot (PDP) can present the marginal
effect of one or two features on the predicted outcomes. It can
indicate the correlation between the features and outcomes.
PDP is easy to implement and understand. Based on the
observation of PDP, the linear and monotonic relationships
can be figured out. However, it is difficult to identify more
complex relationships. Also, a partial dependence function can
only incorporate up to two features, and the features should be
independent of each other. The time complexity of calculating
the PDP for a single feature is usually between O(n) and
O(n2), where n is the number of unique values considered for
that feature. Therefore, generating PDPs for multiple features
may result in higher time complexity.

Permutation Feature Importance calculates the increase in
the prediction error after the permutation of a feature to
measure the importance of the feature. This method is also
easy to understand and efficient. The permutation importance
of a feature considers both its effect on the model and its
interaction with other features. It provides global insights into
ML models. However, this method is sensitive to the correla-
tion between features. The importance of one feature can be
shared by its correlated features, decreasing its importance.
The importance of a feature is quantified as the difference
between the original performance and the performance after
permutation. The time complexity depends on the complexity
of the underlying ML model and the number of features.

Global Surrogate is to train an interpretable model to
approximate the original black box model. Conclusions can
be drawn based on the interpretation of the surrogate model.
This method is straightforward. Any interpretable models can
be used for the global surrogate. However, the generalization
of the surrogate model is challenging. Different datasets may
generate different conclusions. Also, whether an interpretation
of the surrogate models can be used for the original models
is still controversial. The time complexity of Global Surrogate
depends on the complexity of the black-box model, the chosen
surrogate model algorithm, and the size of the training dataset.

Individual Conditional Expectation (ICE) plot is a PDP for
individual instances. It presents the dependence of the outcome
on a feature for each instance separately. Each line in an ICE
plot represents one instance. By averaging the lines in an ICE
plot, the PDP can be generated. Compared with PDP, it is more
intuitive and can reflect heterogeneous relationships. However,
it can only clearly present the effect of one feature. Similar to
PDP, it also suffers from the feature correlation problem. ICE
for a specific data instance represents the expected prediction
outcome as a function of a chosen feature while fixing the
values of other features. The time complexity depends on
the complexity of the underlying machine learning model, the
number of data instances, and the number of features.

The idea of Local Surrogate (LIME) is as intuitive as Global
Surrogate, but it trains local surrogate models to approximate
individual predictions. When interpreting an instance, a new
dataset consisting of perturbed samples and the corresponding

outcomes of the original model is first generated. Then, the
new samples will be assigned weights according to their
proximity to the instance. A weighted interpretable model will
be trained on the new dataset. LIME can make explanations
that are easy to understand and works for multimodal data.
However, it is difficult to define the neighborhood in LIME,
leading to more parameters for tuning. Also, the reliability
of the explanation is significantly influenced by the data pre-
processing. The time complexity depends on the complexity
of the black-box model, the chosen surrogate model algorithm,
and the size of the training dataset or neighborhood.

Shapley Additive explanations (SHAP) measure the feature
importance and interpret the predicted outcomes of machine
learning models based on game theory [40]. It computes the
contribution of each player (i.e., feature) in a collaborative
game (i.e., machine learning models) [40]. SHAP can explain
the model in global and local ways [41]. More specifically,
we denote the jth feature of xi by xij , and the SHAP value
of xij , denoted by f(xij), follows the equation below:

yi = E[f(X)] +

M∑
j=1

f(xij), i = 1, 2, ..., n, (7)

where X is the training dataset; yi is the label of xi; E[f(X)]
is usually the mean of the predicted value of all samples. The
SHAP values of features reflect their impacts on the model
output. It can be implemented efficiently, especially for tree-
based models. However, the explanation of SHAP may be
unintuitive and even misleading, especially when there are
correlated features.

In general, some prerequisites, such as independent features,
should be satisfied when explaining machine learning models
using different approaches. Otherwise, the explanation can
be misleading. In disease diagnosis applications, we should
be very careful when generating conclusions by interpreting
machine learning models, especially the casual insights, since
there might be unmeasured confounding features and corre-
lated input features in real-world settings [42]–[44].

IV. APPLICATIONS IN DISEASE DIAGNOSES

In this section, we categorize the selected articles by their
targeted diseases. The prevalent disease categories include
Parkinson’s Disease, Cardiovascular Diseases, Sleep Issues,
Diabetes, and Respiratory and Pulmonary Diseases. Alongside
these five highly focused categories, there are also works
related to a diverse range of other health issues, including
Epileptic Seizure, Frailty Syndrome, Sarcopenia, and Abdom-
inal Aortic Aneurysm. However, the number of articles asso-
ciated with these additional diseases is comparatively lower
than those within the five most popular disease categories.
Therefore, we first analyze the articles pertaining to the
five most prominent categories and then review the articles
associated with other diseases.

To summarize, there are 19 articles related to Parkinson’s
Disease, 25 articles related to cardiovascular diseases, 5 ar-
ticles related to sleep issues, 6 articles related to diabetes,
15 articles related to respiratory and pulmonary diseases, and
8 papers related to other diseases. The sensor data used are
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TABLE III
THE MAJOR TYPES OF SENSOR DATA USED FOR DIFFERENT HEALTH ISSUES.

Disease Sensor Data
Parkinson’s Disease EMG (17/19), vertical ground reaction force (1/19), IMU (1/19)

Cardiovascular
Diseases

ECG (19/25), PPG (6/25), heart rate (2/25), IMU (1/25), Actigraphy (1/25), blood pressure (1/25)

Sleep Issues PPG (2/5), Actigraphy (1/5), Polysomnography (PSG) (1/5), ECG (1/5), IMU (1/5)

Diabetes Glucose (4/6), blood pressure (3/6), IMU (2/6), PPG (1/6), heart rate (1/6), skin temperature (1/6), GPS (1/6)

Respiratory and Pul-
monary Diseases

Audio (5/15), SpO2 (4/15), IMU (3/15), PPG (3/15), skin temperature (3/15), Actigraphy (2/15), pulse rate (2/15), ratio-
frequency (1/15), local trachea vibration (1/15), strain (1/15), resting heart rate (1/15), GPS (1/15), air quality (1/15)

Others IMU (3/8), electromyography (EMG) (2/8), heart rate (2/8), audio (1/8), Actigraphy (1/8), PPG (1/8), ECG (1/8)
The results are reported in the format of sensor data (M /N ), ordered by popularity, where M and N are the number of articles using this data
related to the health issue and the number of articles reviewed related to the health issue. Each article may use more than one sensor data.

Fig. 4. The number of articles related to the five diseases across years.

summarized in TABLE III. We further look into the years of
the articles with regard to the five main diseases to present the
trends (the articles related to other diseases are excluded). As
shown in Fig. 4, there is an explosion of articles studying
respiratory and pulmonary diseases, which may be due to
the worldwide outbreak and prevalence of the COVID-19
pandemic [45] since 2020. It also leads to an increase in the
usage of skin temperature sensors and SpO2 sensors.

A. Parkinson’s Disease

Parkinson’s disease is a progressive brain disorder. Its
effects on the nervous system affect a patient’s ability to
move and talk, through tremors (shaking), muscle stiffness,
bradykinesia (slowness), and loss of balance and coordination.
Patients with Parkinson’s Disease are therefore more likely to
fall and injure themselves. In particular, episodes of Freezing
of Gait (FoG) – a sudden, brief distortion in the ability to
move – are associated with an increase in falls.

Most research articles using smart wearables on patients
with Parkinson’s disease focus on the detection of FoG events.
Automatic detection of FoG events assists in the evaluation of
the effect of medication and in the understanding of the sever-
ity and type of symptoms a particular patient has. Accurate
predictions can also serve as an early warning signal, allowing
for a stimulus to be sent to the patient’s body to prevent FoG.
There are many types of wearable devices used to take sensor
measurements for detection of FoG or abnormal gait, e.g.,
worn on the waist [47], shank [53], foot or ankle [46], [50]–
[52], or alternatively using a set of sensors simultaneously on
back, hip and ankle [48] or back, arm and leg [49]. However,
the technology behind each sensor is similar: in essence, all

studies detecting gait make use of an inertial measurement
unit (IMU) which includes a three-axis accelerometer and
most often also a gyroscope. Despite the use of similar sensor
technology, a wide range of machine learning techniques is
applied in an effort to detect FoG events or to classify different
phases in the gait, such as SVM [49], KNN [48], Layered
Recurrent Networks [53], and CNN [47]. In a comparison of
SVM, KNN, DT, and RF, Alam et al. [46] found the best
performance using SVMs. Pérez-Ibarra et al. applied both
supervised learning techniques [51] as well as unsupervised
learning techniques [52], with the advantage of unsupervised
learning techniques being that it removes the need for clinical
tests and labeling before deployment of the devices.

Another area of research in patients with Parkinson’s disease
is using wearable devices to detect and classify tremor severity.
With wearable devices, it is easier to follow a patient for
a longer period of time, compared to a regular doctor’s
visit. Tremor severity is classified using measurements of an
accelerometer and gyroscope on the patient’s finger, which is
attached with a cable to a wristwatch-type wearable device
on the wrist [56]–[58]. Alternatively, a commercial off-the-
shelf smartwatch with built-in accelerometer or a sensor plaster
with accelerometer and gyroscope can be used [60]. The
measurements from the accelerometer and gyroscope are used
as input in a classification model to predict tremor severity
in 5 different classes. The results of the ML methods are
compared to ratings assigned by two neurologists using the
Unified Parkinson’s Disease Rating Scale (UPDRS) standard
[56]. Jeon et al. [57] found decision trees to be the most
accurate method for tremor severity classification, compared
to SVM, DA, RF, and KNN. With an accuracy of 85% and
normalized area under the curve (NAuC) of 0.98, the automatic
classifier was almost as accurate as the neurologist expert
rating. Another study [58] proposed the use of CNNs in which
the input for training and testing consisted of a newly created
2D image of accelerometer and gyroscope signals converted
into the frequency domain. This method retrieved a similar
accuracy of 85% but outperformed the other methods to which
it was compared, namely RF, NB, LR, DT, MLP, and SVM.
CNN did particularly well in distinguishing between level 0
and level 1 tremors, i.e., differentiating between the absence
of a tremor and a very slight tremor. For detection of the
presence of tremor, another study used Quadratic Discrimi-
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TABLE IV
OVERVIEW OF REVIEWED ARTICLES RELATED TO PARKINSON’S DISEASE.

Article Objective Wearable device and sensor data Machine learning
techniques

Locations

Alam et al. 2017 [46] Abnormal gait detection Vertical ground reaction force sensors SVM, KNN, Tree-
based

Foot

Camps et al. 2018 [47] FoG detection Three-axis accelerometer, gyroscope,
and magnetometer

NN Waist

Demrozi et al. 2020 [48] FoG prediction Three-axis accelerometer KNN Back, hip, ankle

Ireland et al. 2016 [49] Movement pattern and rhythm de-
tection

IMU with accelerometer and gyro-
scope

SVM Right leg, left
arm, back

Mikos et al. 2019 [50] FoG detection IMU SVM, NB, KNN,
NN, Tree-based, LR

Ankle

Pérez-Ibarra et al. 2020a [51] Gait phases and events detection Single-IMU wearable device with
three-axis velocity sensor and ac-
celerometer

SVM Foot

Pérez-Ibarra et al. 2020b [52] Gait phases and events detection Single-IMU wearable device with
three-axis velocity sensor and ac-
celerometer

HMM Foot

Zia et al. 2016 [53] FoG detection Three-axis accelerometer NN Shank

Belgiovine et al. 2018 [54] Dyskinesia detection Smartwatch with three-axis
accelerometer and gyroscope

SVM, Tree-based Wrist

Loaiza Duque et al. 2019 [55] Classification of Parkinson and Es-
sential Tremor

Smartphone with accelerometer DA, KNN, LR Wrist

Jeon et al. 2017a [56] Tremor severity classification Finger sensor with accelerometer and
gyroscope connected to wristwatch-
type wearable device

SVM, DA, KNN,
Tree-based

Finger, wrist

Jeon et al. 2017b [57] Tremor severity classification Finger sensor with accelerometer and
gyroscope connected to wristwatch-
type wearable device

SVM, DA, KNN,
Tree-based

Finger, wrist

Kim et al. 2018 [58] Tremor severity classification Finger sensor with accelerometer and
gyroscope connected to wristwatch-
type wearable device

SVM, NB, NN,
Tree-based

Finger, wrist

Farhani et al. 2022 [59] Tremor severity classification Surface electromyography (sEMG)
data

BiLSTM Arm

Shawen et al. 2020 [60] Tremor and bradykinesia classifica-
tion

Commercial smartwatch with ac-
celerometer, sensor plaster with ac-
celerometer and gyroscope

RF Wrist

Mahadevan et al. 2020 [61] Tremor severity classification and
bradykinesia classification

Raw accelerometer data RF Wrist

Aich et al. 2018 [62] Classification of Parkinson and
Alzheimer

Wearable devices with 3D motion
analysis system

DA, NB, Tree-based Knee

Aich et al. 2020 [63] Medication ON/OFF state classifi-
cation

Three-axis accelerometer SVM, NB, KNN,
Tree-based

Knee

Khodakarami et al. 2019 [64] Medication ON/OFF state classifi-
cation

Smartwatch with three-axis
accelerometer

SVM, Tree-based,
LR

Wrist

nant [55]. The same study also tried to distinguish between
Parkinson’s disease and essential tremor and found that the
best performance was achieved by LR, compared to medium
KNN and cubic KNN [55]. Deep learning techniques have
also been leveraged to classify tremor types for people with
Parkinson’s Disease. In [59], a bidirectional long short-term
memory (BiLSTM) algorithm was developed to identify the
motion and tremor types using only surface electromyography
(sEMG) data. Mahadevan et al. [61] considered both resting
tremor and FoG. They developed a binary resting tremor
classifier and a gait classifier heuristic and machine learning
models in a hierarchical framework for the assessment of

resting tremor and bradykinesia based on raw accelerometer
data from the wrist on the most affected side.

Other areas of research, in which the literature is more
sparse, include classification to distinguish between Parkin-
son’s Disease and Alzheimer [62], dyskinesia detection [54],
and detection of ON/OFF state of medication [63], [64]. An
overview of all reviewed articles related to Parkinson’s Disease
is shown in TABLE IV.

In general, smart wearable devices, in combination with ML
techniques, are very well capable of detecting FoG events as
well as detecting the severity of symptoms in patients with
Parkinson’s disease. The performance of the machine learning
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algorithms is very similar to the accuracy of clinical expert
diagnoses while saving time and expenses. Suggestions for
further studies include the exploration of other deep learning
techniques capable of including the temporal nature of the
sensor data (i.e., time series analysis, e.g., gated-recurrent-
unit), attention mechanism, larger sample sizes, real-time
evaluation, tests on more resource-constraint devices, training
models on multiple subjects instead of individual subjects, and
integration of multiple data modalities (e.g., skin conductance,
medication cycles, and physical location) [47], [48], [53].

B. Cardiovascular Diseases

Heart disease is the leading cause of death worldwide. It
is a grave disease that influences the heart’s functionality and
gives rise to complications such as infection of the coronary
artery and diminished blood vessel functions. Heart disease
patients do not feel sick until the very last stage of the
disease, and then it is too late because the damages have
become irretrievable. Predicting heart disease is a complex task
since it requires experience along with advanced knowledge.
Electrocardiography monitoring devices are major tools that
help physicians diagnose cardiac abnormalities. Any abnormal
behavior in the electrocardiogram (ECG) signal is an indicative
measure of a malfunctioning of the heart, termed an arrhythmia
condition. Due to the involved complexities such as lack of
human expertise and high probability of misdiagnosing, long-
term monitoring based on computer-aided diagnosis (CADiag)
is preferred [65]. Based on the existing works, it has been
observed that machine learning methods outperform traditional
methods in arrhythmia detection.

Multiple studies have used ECG signals to diagnose cardiac
abnormalities. For example, in-hospital cardiac arrest is a
major burden in healthcare. Although several track-and-trigger
systems are used to predict cardiac arrest, they often have
unsatisfactory performances. In [66], the study hypothesized
that a deep-learning-based artificial intelligence algorithm
(DLA) could effectively predict cardiac arrest using ECG.
It developed and validated a DLA to predict cardiac arrest
using ECG. The results indicate that cardiac arrest could be
screened and predicted not only with a conventional 12-lead
ECG, but also with a single-lead ECG using a wearable device
employing the DLA. Wang et al. [67] studied congestive
heart failure (CHF), which refers to the inadequate blood
filling function of the ventricular pump and it may cause
an insufficient heart discharge volume that fails to meet the
needs of the body metabolism. Inspired by the inception
module from GoogLeNet, it combined LSTM and an Inception
module for CHF detection using EGC signals. Wu et al.
[68] also proposed an end-to-end model for generic and
personalized ECG arrhythmic heartbeat detection on ECG data
from both wearable and non-wearable devices. It developed a
deep learning-based model to address the problem caused by
inter-patient differences in ECG signal patterns. This model
achieves state-of-the-art performance for ECG heartbeat ar-
rhythmia detection on the commonly used benchmark from
the MIT-BIH Arrhythmia Database. The spatial QRS-T angle
is also a promising health indicator for the early detection

of dangerous cardiac events. Santos et al. [69] proposed to
estimate the QRS-T angle using a 1-D convolutional neural
network (CNN1D) based on the 12-lead ECG.

Continuous monitoring of ECG from wearable devices can
enable early detection of heart diseases. Ubiquitous monitoring
on wearable electronics requires a novel class of algorithms
that are low-power and have low-memory requirements. Cor-
radi et al. [70] proposed a wearable compatible and automatic
solution for annotating ECG recordings with an LSTM. The
solution can maintain high accuracy of detection even when
users are carrying out daily activities such as sitting, walking,
and resting. Mhamdi et al. [71] deployed MobileNetV2 and
VGG16 algorithms to classify cardiac arrhythmia into four cat-
egories (i.e., normal, myocardial infarction, myocardial infarc-
tion, and cardiac arrhythmias) based on 12-lead ECG tracings.
They found that there was a small decrease in accuracy after
implementing the algorithms on Raspberry Pi. Some works
improved the real-time monitoring of ECG signals in a cheaper
and more portable way. Walinjkar et al. [72] also contributed
to monitoring an individual’s ECG readings using a wearable
3-lead ECG kit and performing real-time analyses to detect
arrhythmia to be able to identify and predict heart risk. Meng
et al. [73] developed a lightweight structure named LightCov
Attention (LCA) to identify ventricular contraction (PVC)
and supraventricular premature beat (SPB) for arrhythmia
detection from dynamic ECG readings. The proposed model
achieved satisfactory performance with fewer parameters than
the self-attention of the Fussing Transformer. In [74], a three-
layer ANN model was implemented to detect myocardial
infarction based on heart rate variability (HRV) analysis of
one-lead ECG signals.

In the past decade, sensor networks for healthcare IoT
have advanced quickly. We observe increasing applications to
incorporate instantaneous health data by linking bodies and
sensors. In [75], an IoT framework is proposed to evaluate
heart disease using a Modified Deep Convolutional Neural
Network (MDCNN). The smartwatch and heart monitor device
that is attached to the patient monitors the blood pressure and
ECG. The MDCNN is utilized for classifying the received
sensor data into normal and abnormal. Similarly, Sarmah
[76] proposed an IoT-based monitoring system to detect heart
disease using the Deep Learning Modified Neural Network
(DLMNN) classifier. The system has three steps, including
authentication, encryption, and classification to provide secure
data transfer and reliable disease prediction. Lin et al. [77] also
studied several common arrhythmias and built a CNN-based
algorithm for cardiac disease classification.

Apart from cloud-based analysis, Akrivopoulos et al. [90]
proposed a fog computing approach that extends the cloud
computing paradigm by migrating data processing closer to
the sensors, thus accelerating the system’s responsiveness to
events. Moreover, Scire et al. [78] developed a distributed so-
lution by transferring sensor data processing and analysis tasks
to the edges of the network. The resulting solution enables
the analysis and interpretation of sensor data traces within
the wearable device to provide actionable alerts without any
dependence on cloud services. It uses a supervised-learning
approach to detect heartbeats and classify arrhythmias.
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TABLE V
OVERVIEW OF REVIEWED ARTICLES RELATED TO CARDIOVASCULAR DISEASES.

Article Objective Wearable device and sensor data Machine learning techniques Locations

Dinakarrao et al. 2020 [65] Arrhythmia detection On-body wearables and smartphones, ECG
data

Statistical methods, NN, SVM Body

Kwon et al. 2020 [66] Predict cardiac arrest ECG data A deep learning-based artificial intelli-
gence algorithm (DLA)

Chest

Wang et al. 2019 [67] Congestive heart failure (CHF) de-
tection

ECG data LSTM and an Inception module Wrist

Wu et al. 2018 [68] Arrhythmia detection ECG data CNN Chest

Santos et al. 2022 [69] Estimate QRS-T angle ECG data A 1-D CNN Wrist

Corradi et al. 2019 [70] Annotating ECG recordings Fitbit Charge HR, Apple Watch Series 4,
TicWatch Pro, and Empatica E4.

LSTM Wrist

Mhamdi et al. 2022 [71] Arrhythmia classification ECG data MobileNetV2 and VGG16 Chest

Walinjkar et al. 2017 [72] Arrhythmia detection Wearable ECG kit (like smartwatch), ECG
data

KNN Wrist

Meng et al. 2022 [73] Arrhythmia detection ECG data LightCov Attention (LCA) Chest

Shahnawaz et al. 2021 [74] Myocardial infarction detection ECG data A three-layer ANN model Chest

Khan et al. 2020 [75] Heart disease diagnoses and pre-
diction

Omron HeartGuid-bp8000m, AD8232 heart
monitor board, ECG data

MDCNN (a deep learning neural network
with weights optimized using the adaptive
elephant herd optimization algorithm)

Wrist

Sarmah 2020 [76] Heart disease detection Hungarian HD dataset Deep Learning Modified Neural Network
(DLMNN)

Chest

Lin et al. 2019 [77] Cardiac disease detection ECG data CNN-based algorithm Chest

Scire et al. 2019 [78] Heartbeat detection and arrhythmia
classification

ECG data KNN, LSTM Chest

Zhang et al. 2021 [79] Arrhythmias classification ECG data SVM with Gaussian Radial Basis Func-
tion kernel

Chest

Tiwari et al. 2022 [80] Atrial fibrillation detection ECG data An ensembled CNN architecture and
LSTM architecture (ConvNet-LSTM)

Chest

Ramesh et al. 2021 [81] Atrial fibrillation detection ECG and PPG data A 1-D CNN Finger

Zhang et al. 2021 [82] Atrial fibrillation detection ECG data A Transposed Projection - CNN (TP-
CNN)

Chest

Chen et al. 2020 [83] Atrial fibrillation detection Amazfit Health Band 1S, PPG and ECG data A deep CNN (SEResNet) Wrist

Nemati et al. 2016 [84] Atrial fibrillation detection Smartwatch, Samsung Simband, PPG data An Elastic Net logistic model Wrist

Hiraoka et al. 2022 [85] Atrial fibrillation detection Pulse rate data obtained from an Apple Watch
with built-in PPG sensors

GBDT Wrist

Pereira et al. 2019 [86] Atrial fibrillation detection PPG data Attention LSTM Fully Convolutional
Network (ALSTM-FCL), Fully Connected
Network (FCN), VVG19, ResNet18,
ResNet50, and Xception

Chest

Maritsch et al. 2019 [87] Improving heart rate variability
measurements

A chest-based heart rate monitor (First-
beat Bodyguard, consumer smartwatches
equipped with an accelerometer, and an op-
tical heart rate sensor capable of measuring
inter-beat intervals

CNN Chest

Choksatchawathi et al. 2020
[88]

Heart rate estimation UK Biobank wearable device, actigraphy
data, activity levels during sleep, chronotype-
related features, and periodic features

Unsupervised sleep-wake identification al-
gorithm based on HMM and a penalized
multi-band learning approach

Chest

Nidigattu et al. 2020 [89] Estimation of heart rate, systolic
blood pressure, and diastolic blood
pressure

MAX86150 FTHR EVKIT (PPG data), Dr.
Morepen BP One (blood pressure), Sphyg-
momanometer (heart rate and blood pressure)

RF, SVM, KNN Finger

Atrial fibrillation (AF) is one of the most common chronic
diseases, with an estimated total incidence of about 3% in
adults older than 20 years. AF increases the incidence of
heart failure, stroke, and dementia. Traditional diagnosis of
AF depends on professional analysis of 12-lead ECG records.
Many works have been proposed to detect AF directly using
multi-lead or single-lead ECG signals based on machine learn-
ing. Small wearable devices are usually able to collect single-
lead ECG signals. In [79], SVM with Gaussian Radial Basis

Function kernel was utilized to classify Normal Sinus Rhythm
(NSR), Atrial Fibrillation (AF), Other Arrhythmias, and Noise
(too much noise to recognize) from single-lead ECG signals.
Tiwari et al. [80] proposed an ensembled Convolution Neu-
ral Network architecture and LSTM architecture (ConvNet-
LSTM) to detect AF based on ECG data. The proposed
model can be deployed in wearable devices and achieved an
accuracy of 98% on MIT-BIH atrial fibrillation database. To
lower the energy of ECG acquisition and transmission for
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wearable devices, Zhang et al. [82] proposed to compress the
ECG signals by a simple deterministic measurement matrix
(SDMM) and obtain the approximate ECG signals in the cloud
by transpose projection operation on the compressed signals.
A Transposed Projection - Convolutional Neural Network (TP-
CNN) was used to detect AF on the approximate ECG signals.

The study in [83] measured the sensitivity, specificity, and
accuracy of a recently developed smart wristband device
with both photoplethysmography (PPG) and single-channel
ECG systems. The work showed that a combination of PPG,
ECG, and AI algorithms is promising for facilitating AF
detection. Ramesh et al. [81] proposed a one-dimensional
deep CNN to detect AF based on both ECG and PPG data.
The model was first trained on ECG data and assessed on
PPG data through transfer learning. It achieved high accuracy
(more than 95%) on both ECG and PPG datasets. Dagher
et al. [91] echoed that PPG-generated pulse waveform has
the potential to accurately detect episodes of atrial fibrillation
and one day could replace conventional diagnostic and long-
term monitoring methods. Nemati et al. [84] proposed a
noise-resistant machine learning approach for detecting AF
from noisy ambulatory PPG recorded from the wrist using a
modern research watch-based wearable device (the Samsung
Simband). Pulse (beat) detection was performed on the PPG
waveforms, and features were extracted based on beat-to-beat
variability and waveform signal quality. The experiment results
showed that the described approach provides a noise-resistant
accurate screening tool for AF from PPG sensors. Hiraoka et
al. [85] proposed to detect AF from pulse rate data obtained
from an Apple Watch with built-in PPG sensors based on
GBDT and achieved an accuracy of 0.9416 (sensitivity: 0.909,
specificity: 0.838). In addition, Pereira et al. [86] compared
PPG quality assessment approaches based on machine learning
techniques. Image representation of raw PPG data was intro-
duced to enable the application of powerful renowned deep-
learning image classification approaches. High accuracy was
obtained using the ResNet18 model, outperforming the pre-
viously proposed SVM-based PPG quality assessment model.
It shows that refined deep learning approaches may further
benefit from additional large datasets and provide robust tools
for PPG quality assessment.

Many wearable devices use PPG technology nowadays,
though they are inherently less accurate than conventional
electrocardiography monitoring techniques. Research work has
been conducted to improve sensing and classification accuracy
using machine learning methods. For example, Maritsch et al.
[87] studied systematic error that is related to the wearer’s
movement. It showed that the error could be minimized by
bringing into context additional available sensor information,
such as accelerometer data. It further demonstrated how neural
learning could minimize the error of such smartwatch HRV
measurements. To improve sensing accuracy, Choksatchawathi
et al. [88] attempted to perform a post-calibration of the
heart rate (HR) estimation during the three possible states
of average daily activity (resting, laying down, and intense
treadmill activity states) on four popular wearable devices:
Fitbit Charge HR, Apple Watch Series 4, TicWatch Pro,
and Empatica E4. The experimental results demonstrated the

feasibility of the proposed methods to provide HR monitoring
post-calibrated with high accuracy. Nidigattu et al. [89] also
developed a PPG-based detection system for the estimation of
heart rate, systolic blood pressure, and diastolic blood pressure
using machine learning methods, including RF, SVM, and
KNN. Signal processing was done for noise reduction using
various filtering techniques to achieve optimal quality signals.
Extensive feature engineering has been conducted, and the RF
algorithm achieved better performance for the heart rate and
blood pressure estimation. An overview of all reviewed articles
related to Cardiology is shown in TABLE V.

Despite limitations on sensing accuracy, wearable technolo-
gies are attractive in providing low-cost and non-intrusive
health monitoring. Studies evaluating PPG-based wearables
in conjunction with machine-learning algorithms have shown
promise in cardiovascular disease detection. Research chal-
lenges of wearable technologies, including their accuracy and
accessibility, and the clinical implications of wearable-detected
arrhythmias remain to be further explored in the field.

C. Sleep Issues

Sleep occupies about one-third of people’s lifetime and is
crucial to human health [97]. Wearable devices can realize
non-intrusive and non-invasive monitoring of people’s sleep
status [98]. There have been numerous works on sleep mon-
itoring using wearable devices, such as smart rings [99] and
smart watches [97]. Various machine learning algorithms, such
as DT, KNN, RF, SVM, and GDBT have been leveraged to
measure sleep quality [97], [100], identify sleep stages [101],
[102] based on accelerometer and heart rate data. Cho et al.
[92] presented a deep learning architecture, Deep-ACTINet, to
automatically detect sleep-awake based on only noise-canceled
raw activity signals recorded by wrist-worn ActiGraphy during
sleep. Arora et al. [93] proposed three sleep indicators in-
cluding Daily Sleep Quality, Weekly Sleep Quality, and Sleep
Consistency calculated using the data collected by commercial
wearable devices, including Samsung Galaxy Smartwatch and
Xiaomi MI Smartband, and evaluated with the data collected
by clinical ActiGraph devices. CNN and MLP were utilized
to predict sleep quality based on the proposed indicators.

Specifically, Sleep Apnea (SA) is a highly-prevalent breath-
ing disease, which can increase the morbidity and mortality
of human beings [95]. However, although many people are
suffering from this disease, it is quite inconspicuous since
it happens during sleep time. Traditionally, SA is usually
detected by Polysomnography (PSG), which is expensive and
inconvenient since it requires multiple specialized sensors
that are provided in hospitals or labs. Therefore, researchers
have been working on detecting SA using sensors in non-
intrusive wearable devices. ECG signals are one of the most
physiologically relevant to SA and can be obtained by many
wearable devices [94]. Wang et al. [94] modified the LeNet-5
convolutional neural network with adjacent segments to detect
sleep apnea using the PhysioNet Apnea-ECG dataset [103] and
UCD dataset [104]. The performance of the proposed method
has outperformed traditional machine learning methods includ-
ing SVM, KNN, LR, and MLP.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE VI
OVERVIEW OF REVIEWED ARTICLES RELATED TO SLEEP ISSUES.

Article Objective Wearable device and sensor data Machine learning techniques Locations

Cho et al. 2019 [92] Sleep-awake
detection

Wrist-worn ActiGraphy, noise canceled
raw activity signals

A deep learning architecture (Deep-
ACTINet)

Wrist

Arora et al. 2020 [93] Sleep quality evalua-
tion

Samsung Galaxy Smartwatch or Xi-
aomi MI Smartband, sleep attributes

MLP, CNN Wrist

Wang et al. 2019 [94] Sleep apnea detection PhysioNet Apnea-ECG dataset Modified the LeNet-5 CNN with adjacent
segments, SVM, KNN, LR, MLP

Chest

Ye et al. 2021 [95] Sleep apnea detection RR-interval signals Multi-frequency dilated convolutional neural
network (FENet), CNN, LSTM, and CRNN

Wrist

Benedetti et al. 2022 [96] Sleep apnea detection Fitbit Charge4TM, Fitbit AltaHRTM,
tri-axial accelerometer data, PPG data.

MLP, RF Wrist

SA detection based on the interval between two consecutive
pulses (RR-interval) which can be obtained from PPG pulse
sensors has also achieved satisfactory performance. In [95],
a novel multi-frequency dilated convolutional neural network
(FENet) was proposed to detect SA based on RR-interval
signals. They considered the limited battery capacity of small
wearable devices and the proposed method was adaptive to
down-sampled discontinuous signals. The proposed method
was energy efficient and outperformed CNN, LSTM, and
CRNN. Some works leveraged the sensor data and the demo-
graphics of users to detect SA. In [96], Fitbit Charge4TM and
Fitbit AltaHRTM were used to collect tri-axial accelerometer
data and PPG data. Energy expenditure and step counts were
estimated using accelerometer data, and PPG data were used
to estimate heart rates. Based on these data, six features (i.e.,
sleep efficiency, the ratio of total sleep time to time in bed, the
total number of awakenings divided by the total sleep time,
the period of wakefulness that occurs after defined sleep onset,
number of awakenings after sleep onset, and the mean length
of awakenings after sleep onset) were generated. Three pairs
of classifiers based on MLP and RF were used to classify
the severity of SA into four categories (i.e., healthy, mild,
moderate, and severe) using the above-mentioned features,
age, gender, and BMI. An overview of all reviewed articles
related to SA is shown in TABLE VI.

Generally, most of the pervasive commercial smart wearable
devices like smartwatches have provided the function of sleep
monitoring, including the classification of sleep stages and
estimation of sleep quality, in which machine learning algo-
rithms play a significant role. Some more advanced devices
can detect SA or provide the probability of SA. Even if
the detection results are not very accurate, they can draw
more attention to this prevalent but inconspicuous disease. The
characteristics of small wearable devices, such as portability
and non-intrusiveness, make them ideal devices for healthcare
during sleep time. However, the availability of SA detection
in cheaper devices is a challenge. Currently, SA detection
is highly dependent on ECG or PPG data. Continuous real-
time ECG or PPG monitoring during sleep time leads to the
high power consumption of wearable devices, which should
be taken into consideration.

D. Diabetes

Diabetes is a globally prevalent metabolic disease [109]. It
is associated with increased risks of various serious diseases,
such as heart disease and vital organ failures, and has affected
millions of people each year [105]. Early detection of diabetes
is significant for timely treatment and can reduce the probabil-
ity of serious outcomes. In tradition, diabetes can be predicted
by Electronic Medical Records (EMR) consisting of prescrip-
tions and diagnoses from doctors. Also, there are commercial
blood glucose meters, which are usually used to help patients
manage their diabetes by analyzing the fluctuation of blood
glucose levels. A special needle is used to poke a fingertip to
get a drop of blood on a test strip to estimate the blood glucose
level. There are studies working on classifying diabetes based
on glucose meters and ML. For example, in [105], data
collected from glucose meters and multiple sensors, including
motion sensors, temperature sensors, and location sensors,
were used to classify diabetes patients based on using NB,
RF, ZeroR, simple logistic, sequential minimal optimization
(SMO), and J48. The results showed that the SMO algorithm
exhibited excellent classification with the highest accuracy of
99.66%. However, glucose meters are ad-hoc and invasive,
and works on diabetes classification based on glucose meters
usually also requires educated specialists or other sensor data.

In recent years, the popularity and development of non-
invasive wearable devices have provided us with new oppor-
tunities to facilitate the early detection of diabetes. Kaur et
al. [106] introduced several non-invasive smart devices for
continuous monitoring of glucose data, and proposed a cloud
IoT-based framework for diabetes prediction based on the
blood glucose data. The performances of RF, NN, NB, DT,
SVM, and their ensemble models were compared. The results
showed that the ensemble model of DT and NN achieved the
best performance. Ramensh et al. [107] and Torkey et al. [108]
both used public diabetes datasets including 8 attributes (i.e.,
number of pregnancies, glucose level, diastolic blood pressure,
skin fold thickness, body mass index, serum insulin level, age,
and a diabetes hereditary factor pedigree function), which can
be collected by non-invasive glucose meters smartwatches, and
smartphones. Ramensh et al. developed an SVM and achieved
an accuracy of 83.20%. Torkey et al. compared RF, SVM, DT,
and NB, among which RF achieved the best performance with
an accuracy of 96.15%. Some studies worked on predicting
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TABLE VII
OVERVIEW OF REVIEWED ARTICLES RELATED TO DIABETES.

Article Objective Wearable device and sensor data Machine learning techniques Locations

Rghioui et al. 2020 [105] Diabetes classification Glucose meters, motion sensor, tem-
perature sensor, and location sensor

NB, RF, ZeroR, simple logis-
tic, sequential minimal optimiza-
tion (SMO), and J48

Wrist

Kaur et al. 2018 [106] Diabetes prediction Blood glucose data RF, NN, NB, DT, SVM, and their
ensemble models

Wrist

Ramensh et al. 2021 [107] Diabetes classification Public diabetes datasets SVM Wrist

Torkey et al. 2022 [108] Diabetes classification Public diabetes datasets RF, SVM, DT, and NB Chest

Hettiarachchi et al. 2019 [109] Diabetes prediction PPG data and physiological data in-
cluding age, gender, weight, and height

NB, LDA, DT, RF, AdaBoost, LR,
and SVM

Chest

Rashid et al. 2022 [110] Treatment of diabetes
improvement

Wristband, accelerometer, galvanic
skin response, blood volume pulse,
skin temperature, and heart rate data

A 1-D Convolutional RNN with
LSTM layer

Wrist

diabetes based on PPG signals. For example, Hettiarachchi et
al. [109] proposed a method for predicting Type 2 Diabetes
from short PPG signals extracted from smart devices and
physiological data including age, gender, weight, and height.
The NB classifier, Linear Discriminant Analysis (LDA), DT,
RF, AdaBoost, LR, and SVM were employed. Wearable de-
vices can also help the management of diabetes. Rashid et
al. [110] proposed a 1-D Convolutional RNN with LSTM
layer to classify the four states (i.e., ”Meal and Exercise”, ”no
Meal but Exercise”, ”no Exercise but Meal”, ”neither Meal
nor Exercise”) using the accelerometer, galvanic skin response,
blood volume pulse, skin temperature, and heart rate data from
the wristband and historical data to improve automated insulin
delivery systems for treatment of diabetes. The summary of
reviewed papers on diabetes is shown in TABLE VII.

There is an increase in works on diabetes prediction using
wearable devices. However, most of them require blood glu-
cose data, while there are only a few non-intrusive wearable
devices that are able to measure blood glucose data. In
addition, the accuracy of the glucose level estimation using
non-intrusive wearable devices should be further improved.
Diabetes detection based on other data, such as PPG signals,
is also a promising direction.

E. Respiratory and Pulmonary Diseases

Respiratory and pulmonary diseases include disorders or
infections that affect the lungs, such as asthma, bronchiec-
tasis, bronchiolitis, and chronic obstructive pulmonary disease
(COPD). This kind of disease can cause breathing problems
and reduce the quality of life. Researchers have been working
on using wearable devices to identify abnormal symptoms
to help early detection and non-intrusive management of
respiratory and pulmonary diseases.

Most of the studies work on identifying abnormal airway
symptoms such as cough, wheezing, and crackles. In [111],
researchers detected three airway symptoms (i.e., cough, throat
clear, and dry swallow) using audio and mechano-acoustic
data, such as neck surface accelerometers. They used three
datasets, including the Rainbow Passage dataset (a study of
reading a standard passage scripted with airway symptom pro-
ductions), the Vocal Stress dataset (a published study of vocal

loading tests), and the COUGHVID dataset (a crowdsourcing
COVID-19 cough sound project). They compared the perfor-
mance of the ResNet architecture (ResNet18 and ResNet34),
EfficientNetB0, MobileNetV2, an Encoder–Decoder–RNN,
and a vanilla RNN. The CNN-based models were more
accurate but slightly slower than RNN-based models. Hui et
al. [112] presented a wearable ratio-frequency sensor to collect
the local trachea vibration characteristics. The retrieved tissue
vibration caused by the cough airflow burst was then analyzed
by a CNN trained on the frequency-time spectra to directly
identify the mild cough signal. Xue et al. [113] proposed a
kernel-like minimum distance classifier (K-MDC) deployed in
wearable devices to identify cough, breath, and wheeze from
respiratory sounds recorded over the right side of the chest
wall using an electret microphone.

However, the above-mentioned methods rely on throat-fixed
flexible sensors, which are less comfortable and more obvious.
In [114], a deep CNN-RNN model was proposed to classify
respiratory sounds based on Melspectrograms using the public
respiratory sound database containing samples recorded with
different equipment from hospitals. The proposed method can
be deployed in wearable devices with microphones for detect-
ing abnormal respiratory sounds such as crackles and wheezes.
Yang et al. [115] proposed a chest-laminated electronic skin
for cough identification. The e-skin has mixed dumbbell-
like networks and through-holes and is sensitive to stretching
force and sweat permeation. The ’inflates’ and ’deflates’
of e-skin lead to sensor strain and generate corresponding
electrical signals, based on which LSTM was utilized to
identify cough. Zhang et al. [116] collected the accelerometer
amplitude and microphone audio using wearable devices to
detect cough. Accelerometer amplitude data were first used
to identify suspicious cough cases through a simple threshold
filter. When the accelerometer amplitude passes through the
filter, the corresponding multimodal data is processed by auto-
encoders. The attention mechanism was utilized to assign
different weights to different modalities. The representation
of multimodal data was aggregated for cough detection.

Furthermore, the worldwide outbreak and prevalence of the
COVID-19 pandemic have attracted global attention [45]. The
epidemic makes the hospitals overburdened. Hospitals around
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TABLE VIII
OVERVIEW OF REVIEWED ARTICLES RELATED TO RESPIRATORY AND PULMONARY DISEASES.

Article Objective Wearable device and sensor data Machine learning techniques Locations

Groh et al. 2022 [111] Three airway symptoms (i.e.,
cough, throat clear, and dry
swallow) detection

Neck surface accelerometers (NSAs),
audio data and mechano-acoustic data

ResNet architecture (ResNet18
and ResNet34), EfficientNetB0,
MobileNetV2, an Encoder-
Decoder–RNN, and a vanilla RNN

Neck

Hui et al. 2021 [112] Mild cough signal identification A wearable ratio-frequency sensor, lo-
cal trachea vibration characteristics

CNN Neck

Xue et al. 2022 [113] Identification of cough, breath, and
wheeze

Electret microphone, respiratory sounds A kernel-like minimum distance
classifier (K-MDC)

Chest

Acharya et al. 2020
[114]

Detection of abnormal respiratory
sounds (e.g., crackles and wheeze)

Respiratory sounds A deep CNN-RNN model Chest

Yang et al. 2022 [115] Cough identification E-skin, strain LSTM Chest

Zhang et al. 2021 [116] Cough detection Accelerometer amplitude and micro-
phone audio

Auto-encoders and attention mech-
anism

Throat
and chest

Soltanian et al. 2022
[117]

COVID-19 detection Cough sounds Separable quadratic Convolution
layers, RF, LR, CNN, SVM, GRU,
and ordinary convolution.

Chest

Abir et al. 2022 [118] COVID-19 detection Resting Heart Rate (RHR) A LSTM Variational Autoencoder
(LSTM-VAE)

Wrist

Nayan et al. 2022 [119] COVID-19 detection A low-cost pulse oximeter, PPG data Discriminant analysis, KNN, DT,
SVM, and ANN

Finger

Hirten et al. 2022 [120] COVID-19 detection Apple Watch Series 4 or higher, PPG
data

GBM, elastic-net, partial least
squares, SVM, and RF

Wrist

Mankodiya et al. 2022
[121]

COVID-19 detection SpO2, temperature, and pulse rate LR, Bernoulli naive Bayes (BNB),
SVM, and DT

Wrist

Mason et al. 2022 [122] COVID-19 detection Oura Ring, dermal temperature, PPG
data, and accelerometer data

RF-based machine learning algo-
rithm

Finger

Jadav et al. 2022 [123] COVID-19 detection Blood oxygen level, pulse rate, and
body temperature

KNN and LR Wrist

Wu et al. 2022 [124] Chronic obstructive pulmonary dis-
ease prediction

A location-based smartphone APP,
wearable devices, air quality sensing
devices, and open environmental data
API to collect various human lifestyle
data (i.e., physical activities, heart rate,
SpO2, and sleep patterns) and environ-
mental data

RF, DT, LDA, AdaBoost, and DNN Wrist

Skibinska et al. 2022
[125]

Distinguishing COVID-19 and two
types of Influenza

Fitbit smartwatches, including the sleep
records, step counts, and heart rates

XGBoost, KNN, SVM, RF, DT,
and LR

Wrist

the world have faced a significant shortage of manpower, and
people’s healthcare resources are quite limited, especially in
developing countries. The early detection of COVID-19 is
critical to slow down or even cut off its spread and is vital
to relieve the heavy burden on medical systems [126]. Upon
this basis, numerous works have been proposed to identify
COVID-19 using wearable devices. Soltanian et al. [117]
proposed separable quadratic Convolution layers to identify
COVID-19 from cough sounds. The proposed network outper-
formed RF, LR, CNN, SVM, GRU, and ordinary convolution.
The network is lightweight to be deployed in wearable devices.
Many works leveraged the heart rate data collected by PPG
to detect COVID-19 infection. For example, in [118], a Long
Short-term Memory Variational Autoencoder (LSTM-VAE)-
based anomaly detection framework (PCovNet) was proposed
to detect COVID-19 infection in the presymptomatic stage
using Resting Heart Rate (RHR) derived from the wearable
devices, i.e., a smartwatch or fitness tracker. Nayan et al. [119]

compared the performance of DA, KNN, DT, SVM, and ANN
on COVID-19 identification using PPG features extracted from
a low-cost pulse oximeter. The ANN showed the best perfor-
mance with 95.45% accuracy, 100% sensitivity, and 90.91%
specificity by using six input features. In [120], PPG data were
collected from 407 participants using Apple Watch Series 4 or
higher. Heart rate variability (HRV) and RHR were calculated,
based on which gradient-boosting machines (GBM), elastic-
net, partial least squares, SVM, and RF were implemented
to predict COVID-19. GBM achieved the best performance
with an average area under the receiver operating characteristic
(auROC) = 86.4% (confidence interval [CI] 84–89%).

Some works leveraged various sensor data collected by
multiple sensors to improve detection accuracy. In [121],
SpO2, temperature, and pulse rate obtained from wearable
devices were used, and four machine learning algorithms, in-
cluding LR, Bernoulli naive Bayes (BNB), SVM, and DT were
compared. The SVM model achieved the best performance
with an F1-score of 96.64% and an accuracy score of 96.57%.
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Mason et al. [122] collected dermal temperature, PPG data,
and accelerometer data using Oura Ring. PPG data were used
to generate heart rate, heart rate variability, and respiratory
rate, and accelerometer data were used to estimate physical
activity. Based on these data, the authors developed an RF-
based machine learning algorithm to identify COVID-19 onset
and achieved high sensitivity (82%) and moderate specificity
(63%). In [123], a blockchain-based framework, BaRCODe,
was proposed to detect COVID and provide prompt medical
treatment. Smartwatches were used to collect the blood oxygen
level, pulse rate, and body temperature of users. KNN and LR
were incorporated into the framework to identify COVID-19
patients and malevolent wearable devices, respectively. Wu et
al. [124] further incorporated the environmental data. They
used a location-based smartphone APP, wearable devices, air
quality sensing devices, and open environmental data API to
collect various human lifestyle data (i.e., physical activities,
heart rate, SpO2, and sleep patterns) and environmental data
from 1,667 patients for 24 months. Based on these data, RF,
DT, LDA, AdaBoost, and DNN were implemented to predict
chronic disease including chronic obstructive pulmonary dis-
ease, obesity, and panic disorder.

Besides, Skibinska et al. [125] studied the usage of ML al-
gorithms to distinguish COVID-19 and two types of Influenza.
The data were obtained by Fitbit smartwatches, including
sleep records, step counts, and heart rates. They compared the
performance of XGBoost, KNN, SVM, RF, DT, and LR in the
middle stage of the pandemic. The evaluation results show
that KNN achieved the highest accuracy (73%). Also, there
are some works on recognizing people’s high-risk behaviors
of virus transmission, such as touching face [127] and washing
hands [128], which are not the focus of our review. To
summarize, the reviewed papers are listed in TABLE VIII.

Generally, before the outbreak of COVID-19, works on
respiratory and pulmonary disease detection using wearable
devices mainly focused on identifying abnormal airway symp-
toms through analyzing the audio data or vibration collected
by wearable devices. There are still many challenges and
opportunities. For example, the neck wearable devices for
collecting acoustic signals are too obvious, and those e-skin-
based sensors are too ad-hoc. For those wrist-worn devices,
some of them require the users to use a specific pose to
collect the audio data. The success rate of data collection and
accuracy of detection need to be further improved. Future work
can consider incorporating multi-modal data to expand the
respiratory and pulmonary diseases that can be monitored by
wearable devices. On the other hand, the worldwide prevalence
of COVID-19 has attracted great interest in exploring the
potential of wearable devices for pandemic detection and
control. Heterogeneous data collected by multiple sensors in
wearable devices can benefit pandemic detection and control
from different perspectives. For example, the location sensor
can help track potential patients and predict infection risk.
Accelerometer and gyroscope data can be used to detect
critical behaviors. In this work, we mainly reviewed works
that directly identify the disease using machine learning al-
gorithms and sensor data from wearable devices. According
to the above-reviewed papers, distinguishing COVID-19 and

other influenza types is a great challenge since the superficial
characteristics of COVID-19 are quite similar to influenza. The
key difference is that COVID-19 is more likely to damage the
lungs and cause shortness of breath, which is challenging for
wearable devices to identify.

F. Others

Apart from the health issues and diseases discussed in the
above sections, there are numerous works related to a wide
variety of other health issues. Since there are not as many
articles associated with each of these diseases as the above-
mentioned diseases, we briefly review and summarize these
articles in this section.

1) Epileptic Seizure: Epilepsy is one of the most common
chronic neurological diseases. Epilepsy Seizure can lead to
accidents and sudden unexpected death [129]. It is important
to monitor epilepsy patients in real time. By detecting epileptic
seizures and notifying the caregivers, the patients can get
timely help to reduce the risk of seizure-related accidents.
There are works on detecting epileptic seizures based on ECG
data. In [129], a method for distributing machine learning
computations between the edge, fog, and cloud considering
the trade-offs in terms of energy consumption, latency, and
performance was proposed for epileptic seizure detection.
The detection system was implemented in the Smart-Cardia
INYU wearable sensor [136] using the EPILEPSIA dataset
[137], which consists of ECG data from 30 patients with
277 seizures recorded in 4603 hours. Kok et al. [130] first
extract Mel-frequency Cepstral Coefficients (MFCCs) from
acoustic signals collected from the neck wearable devices, and
then used a random under-sampling and boosting (RUSBoost)
classification algorithm to identify the ictal and non-ictal
acoustic segments. A simple post-processing stage was applied
to the classification results to identify seizure episodes. In
[131], multiple sensor data, including the heart rates, sleep, and
step counts collected by wearable smartwatches, were used to
estimate the seizure risk either daily or hourly based on an
ensemble of an LSTM, an RF regressor, and an LR classifier.

2) Frailty Syndrome: Frailty is a common clinical syn-
drome related to aging [138]. It increases the risk of adverse
health outcomes for the elderly. Garcia et al. [132] collected
tri-axial accelerometer, gyroscope, and heart rate data using
Samsung Gear S3, and implemented four machine learning
algorithms, KNN, SVM, RF, NB, to assess frailty status for
the elderly. The results showed that KNN achieved the best
performance. Wearable devices can help family members or
caregivers keep track of the frailty status of elders, and take
timely measures for frailty prevention and treatment.

3) Sarcopenia: Sarcopenia is defined as an involuntary
loss of skeletal muscle mass and strength due to aging or
immobility [139]. It can be identified by analyzing the motion
or electromyography patterns. Kim et al. [38] collected the
tri-axial acceleration and angular velocity signals of feet
to derive spatiotemporal and descriptive statistics. Shapley
Additive explanations [40] were utilized to select important
parameters. SVM, RF, MLP, CNN, and BiLSTM were used
to identify sarcopenia based on the collected data. The SVM
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TABLE IX
OVERVIEW OF REVIEWED ARTICLES RELATED TO OTHER HEALTH ISSUES.

Article Objective Wearable device and sensor data Machine learning techniques Locations
Forooghifar et al. 2019
[129]

Epileptic seizure de-
tection

ECG data A method for distributing machine
learning computations

Wrist

Kok et al. 2022 [130] Epileptic seizure de-
tection

Neck wearable devices, acoustic signals A random under-sampling and boosting
(RUSBoost) classification algorithm

Chest

Stirling et al. 2021 [131] Epileptic seizure de-
tection

Smartwatches, heart rates, sleep and
step counts

An ensemble of an LSTM, an RF re-
gressor, and an LR classifier

Wrist

Garcia et al. 2020 [132] Frailty status
assessment

Samsung Gear S3, tri-axial accelerom-
eter, gyroscope, and heart rate data

KNN, SVM, RF, NB Wrist

Kim et al. 2021 [38] Sarcopenia
detection

Tri-axial acceleration and angular ve-
locity

SHAP, SVM, RF, MLP, CNN, and BiL-
STM

Foot

Leone et al. 2022 [133] Sarcopenia
detection

Small electrodes, raw electromyogra-
phy data

SVM, RF, LR, NB, DT, KNN, XGB,
MLP

Chest

Chen et al. 2022 [134] Sarcopenia
detection

Electromyography signals and tri-axial
accelerometer data

LCNet Thigh, calves,
waist, back

Wang et al. 2021 [135] Abdominal Aortic
Aneurysm detection

Digital artery, Photoplethysmogram ar-
terial pulse wave (PW) signal

BRNN with LSTM model Wrist, finger

model with 20 descriptive statistical parameters achieved the
best performance. In [133], an sEMG-based platform for sar-
copenia evaluation was designed and implemented. Raw elec-
tromyography data were collected through small electrodes to
generate sarcopenia-related features. Then, machine learning
algorithms, including SVM, RF, LR, NB, DT, KNN, XGB, and
MLP, were leveraged to classify the sarcopenia levels, among
which the SVM classifier achieved the best performance. Chen
et al. [134] collected signals of electromyography and tri-axial
accelerometer data using wearable devices. After data aug-
mentation by the DTW Barycenter Average algorithm, various
indicators were calculated by the Bodi algorithm. Then, LCNet
was implemented to classify the risk of sarcopenia into two
classes, i.e., high risk and low risk.

4) Abdominal Aortic Aneurysm: Abdominal Aortic
Aneurysm (AAA) is difficult to detect since it often grows
without noticeable symptoms. Wang et al. [135] proposed
to utilize BRNN with the LSTM model to facilitate early
detection of AAA based on the photoplethysmogram arterial
pulse wave (PW) signal measured in the digital artery with
wearable devices. The early detection of aneurysms can
prevent exacerbation of the disease.

The above-reviewed papers are summarized in TABLE IX.
Many diseases influence human physiological signals, such
as heart rates, mobility, and sleep quality. Various sensors in
small wearable devices can collect these physiological data. By
analyzing the abnormal patterns in these data, various diseases
can be detected. The reviewed papers show the power and
potential of wearable devices for disease diagnoses.

V. CHALLENGES AND FUTURE DIRECTIONS

Although current research has achieved great success in
disease diagnoses based on wearable devices and machine
learning, there are still many challenges. In this section, we
discuss these challenges and attempt to present some new
research directions.

A. Privacy Concerns

Most reviewed works rely on patients sharing their sensitive
health data. Many works collected data from participants
for model training. Although some models can be trained
by desensitized public datasets, privacy concerns arise when
vital signals of users are required for inference. This issue
can be addressed from several perspectives. First, differential
privacy [140] can be applied to databases, such as adding noise
to datasets without influencing the results of data analysis.
However, it cannot always guarantee privacy. The datasets may
be denoised, and users still have to upload their personal data.
Also, there may be trade-offs between accuracy and privacy.
The generalizability of this method has also been questioned.

Federated learning (FL) scheme [141] is another promising
solution. Users download a global model, based on which
local models are trained using local datasets, and the trained
parameters can be uploaded to improve the global model.
In this case, the private data are kept on devices without
uploading to servers or sharing with others. However, due
to the limitations of datasets, the FL scheme may have
slightly lower performance than the original scheme. Also,
it usually requires more communication between edge devices
and servers. For disease diagnoses in wearable devices, an FL
scheme can address the problem of insufficient data at the early
stage. The communication scheme can be designed to be more
flexible. For example, since the application is quite personal,
the local models can be updated based on only local data
when they have already achieved satisfactory performance.
The global model can be updated by parts of local updates and
transfer the knowledge to local models when needed. In this
way, the federated scheme can be more effective and efficient
for disease diagnoses.

Furthermore, although the FL framework addresses the
privacy concern to some extent, there still remains a risk
of privacy breaches and communication bottlenecks during
parameter transmission. Another novel computing paradigm,
over-the-air computing has emerged as a promising approach.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

It involves performing certain types of computations directly
over the wireless medium, thus mitigating the need for exten-
sive data transmission, reducing communication overhead, and
enhancing privacy protection [142], [143]. Integrating over-
the-air computing with FL offers a promising solution in the
healthcare domain [144]. It can be particularly beneficial in
tasks like patient data analysis from wearable or remote mon-
itoring systems, offering enhanced privacy and communication
efficiency [145], [146]. However, challenges such as handling
noise and interference in wireless channels and ensuring secure
computations over-the-air need to be addressed.

B. Security Concerns
The proliferation of wearable devices has raised new secu-

rity concerns in healthcare [147]. While these small, portable
devices offer great convenience and potential for disease
diagnosis, they are susceptible to security vulnerabilities [148].
With limited computing power, small wearable devices often
have to connect to networks or other devices for analysis
results, making them become attractive targets for malicious
actors seeking unauthorized access to sensitive personal health
information [149]. The security vulnerabilities in the software
or communication protocols can lead to data breaches, identity
theft, or unauthorized tampering with health data, hindering
users’ trustworthiness of wearable devices in disease diagnosis
and monitoring applications.

To mitigate security concerns, it is crucial to implement
robust security measures throughout the entire ecosystem
of wearable devices. This includes secure data transmission
protocols, encryption techniques to protect data at rest and
in transit, and strong authentication mechanisms to ensure
that only authorized individuals can access the device or
its data [150]. Regular software updates and patches should
be provided to address any vulnerabilities that may arise
over time. Additionally, manufacturers and developers should
conduct thorough security assessments and testing to identify
and address potential weaknesses in the devices and their
associated software. User education and awareness regarding
security best practices can also play a significant role in
minimizing risks.

C. Transmission Latency and Reliability
Since many wearable devices require connection to a net-

work for data storage and analysis, transmission latency and
reliability are critical factors that need to be addressed when
utilizing wearable devices for disease diagnosis. Data gener-
ated by wearable devices need to be transmitted in real-time
for timely and accurate diagnosis [151]. However, the reliance
on wireless networks and the potential for network congestion
can introduce latency, causing delays in data transmission, and
hindering time-sensitive diagnoses and real-time monitoring.
Moreover, the reliability of data transmission is crucial to
ensure the integrity of the collected data. Transmission errors
or data loss can lead to incorrect diagnoses, compromising the
effectiveness of the healthcare monitoring process.

To reduce latency, a potential solution is implementing
efficient data compression techniques [152]. Edge comput-
ing, where data processing occurs closer to the source, can

also minimize the dependency on distant servers, improving
response times [153]. Furthermore, state-of-the-art transmis-
sion techniques based on machine learning have significant
potential to reduce latency and increase reliability for disease
diagnoses based on wearable devices [154], particularly when
it comes to data processing with ultra-reliable and low latency
requirements. They can help optimize future networks [155]
and assist in the compression, real-time analysis, and interpre-
tation of data collected from wearable devices.

Specifically, different smart wearable systems for different
diseases may have different requirements for transmission
speed and reliability. For example, the timely detection of
epileptic seizures requires low latency and high reliability,
while monitoring sleep issues is not as compromised with
slightly higher latency. It is essential to strike a balance
between transmission speed and reliability and cost depending
on the monitored disease and associated risks.

D. Energy Consumption

Most of the current works require continuous monitoring of
vital signs, which consumes a lot of electrical power, while
small wearable devices usually have small batteries and limited
electrical power. Although many commercial wearable devices
have already supported ECG tracking, opening this function
would significantly reduce the battery life. Also, currently,
most commercial wearable devices identify diseases by up-
loading user information to the server and obtaining results
from the server. To reduce energy consumption, researchers
can consider designing new sampling methods to reduce the
sampling rate of vital signs while keeping the performance,
applying interpolation methods to impute the low sampling
data, or designing new model architectures [156] that work
well on data with low sampling rates. Also, some stages can
be built into the devices to reduce the communication between
the server and the devices.

On the other hand, to address the privacy concerns discussed
above, wearable devices are expected to train and run ma-
chine learning models locally, which definitely requires more
electrical power. To address this issue, both the hardware and
software should be improved. As for the hardware part, it
is important to design small batteries with more electricity
storage and reduce the energy consumption of the commu-
nication module. As for the software part, besides designing
the federated scheme that is more effective and efficient for
disease diagnoses, more lightweight machine learning models
that require less computing power should also be developed.

However, it is a significant challenge to strike a balance
between creating lightweight models and maintaining the
necessary complexity to accommodate the variety and sophis-
tication of tasks. Besides, as ML models grow increasingly
complex, their sizes inevitably increase [157]. This results in
an increasing need for more computational resources, thus
increasing energy consumption. To address this issue, the
following directions can be considered. Firstly, the com-
munication of parameters across different layers consumes
significant energy, especially when dealing with large datasets
or complex models. Quantization and model compression
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techniques can be used to reduce communication costs [158],
[159]. However, these methods may increase the model com-
plexity from another perspective and degrade the performance.
Secondly, the inference phase of complex models can also be
energy-consuming, which is often overlooked but important
in the context of IoT. A promising solution is Knowledge
Distillation [160], which involves training a smaller, simpler
model (student) to mimic the behavior of a larger, complex
model (teacher) [161]. The distilled model can achieve com-
parable performance to the original model, while requiring
fewer computational resources for inference, leading to energy
savings. In addition, there is currently a lack of standard
benchmarks and tools to measure the energy consumption
of ML models accurately. Building such benchmarks will be
significantly helpful to compare different models or strategies
and to track improvements in energy efficiency.

E. Multi-Modality, Multi-Sensors, and Multi-Devices

Based on the literature review, we can find that the data
used in many works are quite common. Most works used
accelerometers, ECG, and PPG data. Besides the sensor data,
some works [108], [109] also utilized the personal information
of patients, such as gender, age, and weight to help the diag-
noses. Since many diseases, such as diabetes and cardiovascu-
lar diseases, are significantly related to personal information,
it is reasonable to take this information into consideration.
Besides, the environmental contexts are also important factors,
such as weather conditions, air pollution, and living conditions,
which are related to people’s health status. Multi-modal data,
including text, audio, image, and video can be collected to
represent various personal and environmental contexts [162].
These data can be combined with frequently used vital signs
to improve the disease diagnosis of wearable devices.

To increase the variety of data collected, apart from the
popular sensors, such as accelerometer, gyroscope, and PPG
sensor, various sensors should be developed. For example,
Yang et al. [115] developed an e-skin to identify cough. These
novel sensors facilitate the collection of multi-modal data,
increasing the coverage of diseases that can be detected by
wearable devices and improving performance.

Furthermore, new wearable devices are also worth studying.
Currently, wristbands are the most prevalent wearable devices
in both research and the market, since it is convenient and
acceptable for participants to wear wristbands continuously.
However, the signals collected from wristbands can be very
localized and not accurate enough for disease diagnoses. On
the one hand, this disadvantage can be overcome by improving
the sensors and algorithms. On the other hand, new forms of
wearable devices can be developed. For example, Kim et al.
[163] proposed a sensory face mask. Corresponding to various
diseases, various locations on the human body can be taken
into consideration to obtain more accurate physiological data.
When designing the device, many important factors, such as
comfort, size, looks, convenience, charging frequency, and
weight, should be taken seriously, since these factors will
influence people’s willingness to wear continuously and the
quality of data collected.

However, the increasing heterogeneity of data collected
by various wearable devices also introduces new challenges,
impacting both the efficiency and performance of models. To
address these challenges, various techniques can be utilized.
Firstly, data preprocessing, such as scaling and normalization,
can be used to standardize diverse data types and minimize
discrepancies [164]. Secondly, feature selection can help iden-
tify the most relevant features, reducing data dimensionality
and model complexity [165]. Thirdly, multimodal learning
has aroused great attention recently, which deals with models
trained on data coming from multiple different input types or
modalities [166]. Developing robust multimodal learning mod-
els that can handle different types of data simultaneously and
effectively is a promising solution to handle data heterogeneity.

F. Evaluation Metrics

When evaluating the performance of the proposed methods,
current works usually report the accuracy, AUC, sensitivity,
and specificity. Sensitivity represents the ability of the model
to identify patients with a disease correctly, while specificity
represents the ability of the model to identify healthy people.
Usually, a higher sensitivity correlates with a lower speci-
ficity. In the literature reviewed, when reporting the results,
sensitivity and specificity are based on the threshold selected
according to the ROC curve to achieve a balance between
them. However, sensitivity and specificity may have different
weights in different application scenarios. For some high-
risk diseases, sensitivity should be prioritized, while for some
low-risk diseases, specificity should be prioritized to avoid
fake alarms. Therefore, it is meaningful to design evaluation
metrics for different purposes and apply a more flexible alarm
mechanism. For example, in practice, rather than using a fixed
threshold, the threshold can be adjusted by users. Feedback
mechanisms can be added to the system, and thresholds can
be selected based on expert experience or crowd intelligence.

G. Explainability

Explaining machine learning models is of vital importance
in healthcare. However, from the literature reviewed, few
works evaluate the explainability of their models. Among
the works discussed in this survey, only Kim et al. [38]
leveraged SHAP to select important parameters, indicating
that the explainability of machine learning in healthcare using
wearable devices has not been fully studied. Therefore, we
encourage researchers to pay more attention to explaining their
models and discussing why their models can achieve good
performance. By making the decision-making process more
transparent, the results can be more reliable and persuasive.
By explaining the machine learning model, important features
can be identified. Thereby, unnecessary and less important
features can be pruned to remove unnecessary sensors and
make the models more lightweight, which is important for
edge devices with limited computing and electricity power.
Also, by analyzing the correlation between input features
and outcomes, risk factors to people’s health status can be
identified. In this way, a system that can make suggestions
for reducing the probability of diseases can be developed.
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The model explanation can provide many insights. However,
as discussed in Section III-C, we should be very careful to
avoid over-claims when making suggestions. Generally, there
are many opportunities and challenges in this direction.

H. Generalization and Personalization

The emergence of large-scale machine learning models
has attracted great attention, which also has a significant
impact on disease diagnoses due to their immense capacity
for learning complex patterns from vast amounts of data
[167]. However, they also bring new challenges in the context
of wearable devices. Firstly, the computational requirements
of these models usually exceed the capabilities of resource-
constrained wearable devices. Besides using central servers
to deploy the large models, potential solutions include dis-
tilling the knowledge from large models to build lightweight
models [168] and developing efficient model compression and
optimization techniques [169]. Secondly, the large generic
models, trained on diverse datasets offering broad diagnostic
capabilities, might lack the specificity required for individuals’
unique health profiles. A growing trend is to consider personal
characteristics and adapt the models to individual variations
for diagnostic insights, while the development of personalized
models poses challenges in terms of data availability, privacy
and security concerns, and explainability as discussed above.

Generally, research efforts could focus on striking a balance
between the benefits of large-scale generic models and the
need for personalized models, developing techniques leverag-
ing the advantages of both approaches. This includes exploring
federated learning, transfer learning, and hybrid models that
combine generic knowledge with patient-specific adaptation.

I. Social Influence and Human Factors

Current health-related research based on wearable devices
and machine learning mainly aims to increase the performance
and generalization of models, lacking the consideration of so-
cial influence and human factors. Although many researchers
from Computer Science, Electrical and Electronic Engineer-
ing, Medicine, Public Health, etc. have been working together
in this area, there are few researchers from psychology and
sociology. For example, patients’ willingness to wear devices
that could potentially diagnose their diseases should be evalu-
ated. It will be interesting to study whether this kind of devices
may increase patients’ anxiety and adversely influence their
comfort and mental health. Also, if patients visit the doctor
less often with the help of wearable devices, it may lead to less
social contact and medical control. In addition, there are still
many other factors, such as placebo effect [170] and human-
computer interaction (HCI) [171], remaining to be explored.
Therefore, we encourage more interdisciplinary collaborations
to conduct social-physiological analyses and HCI studies, and
consider the well-being and benefits of both individuals and
the whole society when designing the systems.

VI. CONCLUSION

Nowadays, smart wearable devices, such as smart watches,
are becoming more and more popular and have changed the

way we live. Various small sensors and the development of
machine learning make it feasible to diagnose various diseases
with wearable devices. In this survey, we comprehensively
reviewed articles related to specific diseases or health issues
based on small wearable devices and machine learning. We
classify these articles according to their corresponding disease
types and summarize their objective, sensor data, machine
learning techniques used, and wearing locations. Based on the
literature review, we discuss the challenges and propose future
directions, aiming to inspire researchers in this field.
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