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Abstract
A comprehensive understanding of city structures and ur-

ban dynamics can greatly improve the efficiency and quality
of urban planning and management, while the traditional
approaches of which, such as manual surveys, usually incur
substantial labor and time. In this paper, we propose a data-
driven framework to sense urban structures and dynamics
from large-scale vehicle mobility data. First, we divide
the city into fine-grained grids, and cluster the grids with
similar mobility features into structured urban areas with a
proposed distance-constrained clustering algorithm (DCCA).
Second, we detect irregular mobility traffic patterns in each
area leveraging an ARIMA-based anomaly detection algo-
rithm (ADAM), and correlate them to the urban social and
emergency events. Finally, we build a visualization system
to demonstrate the urban structures and crowd dynamics. We
evaluate our framework using real-world datasets collected
from Xiamen City, China, and the results show that the
proposed framework can sense urban structures and crowd
comprehensively and effectively.

Keywords vehicle mobility, big data, spatial clustering,
event detection, urban computing, ubiquitous computing

1 Introduction

In order to facilitate efficient urban planning and effective
city management, urban authorities need to understand the
city functions of different areas [1], as well as the crowd
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dynamics moving around the city [2]. On one hand, urban
planning, construction, and development have led to regu-
lar urban structures [3], such as central business districts
(CBDs), residential areas, and transit hubs. Meanwhile, the
occurrences of urban events may break the regular crowd
movement patterns in different areas of the city [4, 5]. For
example, holding a concert in a stadium may lead to abnormal
human flow peaks around the stadium and the city’s transit
hubs. Due to the lack of a comprehensive understanding of
the urban structures and crowd dynamics, urban authorities
face difficulties in evaluating the impacts of urban social
and emergency events, which affect the short-term event
management and long-term urban planning. Therefore, it
is of great importance for urban authorities to have a clear
picture of urban structures, and to be able to analyze the
crowd dynamics caused by urban events.

Urban structures are a reflection of social economy, culture
and other factors in space [6, 7]. There are many different
ways to analyze urban structures, such as divide the city
into different functional districts. For example, Yuan et
al. [8] analyzed the structures of urban areas by dividing
urban roads into different blocks with image processing
technologies. However, the fast pace of urban development
has led to dynamic urban structures, and different urban
areas exhibit complex spatial-temporal dependencies [9, 10].
Such dynamic and complex attributes can be reflected by
human mobility patterns in and among these districts [11].
Therefore, we seek to incorporate human mobility data
sources for urban structure analytics.

Urban events, on the other hand, may obstruct the normal
operation of cities, and even cause great losses of lives and
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properties [12]. For example, a concert in a stadium may lead
to a significant increase of vehicles in its surrounding areas
and cause traffic congestions. Specifically, different kinds
of urban social and emergency events may lead to different
human mobility patterns in different urban areas [4, 5, 13]. A
comprehensive perception of the urban structures can greatly
benefit the detection and understanding of abnormal crowd
dynamics, and help urban authorities make a quick response
to urban events.

However, traditional methods of sensing urban structures
and crowd dynamics mainly rely on manual surveys and
statistical reports [14], which have following limitations.
First, detailed surveys consume substantial time and labor,
due to the large scale of cities [5]. Second, surveys are not
comprehensive, since manual investigation may not cover the
city-wide human activities and movements. Fortunately, with
the advances of Internet of Things and big data technologies,
various kinds of urban sensing data have been available, pro-
viding us with new opportunities to analyze urban structures
and crowd dynamics in a data-driven manner [1, 13, 15].

In this work, we exploit large-scale vehicle mobility data
extracted from city-wide taxi trajectories to sense urban
structures and crowd dynamics. Meanwhile, we retrieve de-
tailed information about urban social and emergency events
from social media to verify the causes of abnormal crowd
dynamics. In particular, we propose a two-phase framework
to sense urban structures and crowd dynamics in a data-
driven manner. In the first phase, we divide urban areas into
geographical grids, and then map taxi GPS trajectories into
the corresponding grids to obtain the spatial-temporal crowd
mobility patterns. We then cluster grids with similar mobility
patterns to obtain city functional regions. In the second
phase, we detect abnormal traffic flows in each functional
region, and verify the abnormal crowd dynamics with urban
event information retrieved from social media. Finally, we
build a visualization system to demonstrate the mobility
patterns and impacting scopes of different types of urban
events. In summary, the main contributions of this paper
are summarized as follows:

1. We propose a data-driven methodology for sensing ur-
ban structures and crowd dynamics, which greatly ben-
efits urban planning and development.

2. We propose a two-phase framework to analyze urban
structures and crowd dynamics leveraging vehicle mo-
bility data. In the urban structure portrait phase,
we divide the city into fine-grained mobility grids,
and propose a distance-constrained clustering algorithm

(DCCA) to cluster the grids with similar mobility fea-
tures into structured urban areas. In the crowd dynamic
characterization phase, we detect irregular mobility
traffic patterns in each area leveraging an ARIMA-based
anomaly detection algorithm (ADAM), and correlate
them to the urban social and emergency events extracted
from social media.

3. We evaluate our method using real-world taxi GPS tra-
jectory and social network data collected from Xiamen
City, China. Results show that our method can sense
the urban structures and characterize the crowd dynam-
ics in urban events effectively and comprehensively,
and consistently outperforms the baseline methods. A
visualization system is developed to demonstrate the
mobility patterns and impacting scopes of different types
of urban events.

The remainder of this paper is organized as follows.
We first review the related work in Section 2, and then
describe the dataset in Section 3. We describe the two-
phase framework in Section 4. In section 5 and Section
6, we present the proposed urban structure sensing and
crowd dynamics characterization techniques. The results of
experiments are shown in Section 7. Finally, we conclude the
paper in Section 8.

2 Related Works

In this section, we survey the related research work from the
following two aspects: (1) analysis of urban functions and
structures, and (2) urban events and impacts.

2.1 Urban Functions and Structures

A series of existing work related to urban function and
structure analysis have been conducted in the literature [8,
16, 16]. For example, Yuan et al. [8] employed image
processing techniques to extract information from remote
sensing images of urban roads, and then extract urban areas
surrounded by road segments. This image-based method
does not consider the latent social functions, populations,
and human activities. Esch et al. [16] estimated the pop-
ulation distribution through the density of buildings and
constructions, and mapped them to different urban structures.
Chen et al. [17] attempted to depict the crowd dynamics
and urban structures through the communication logs of
mobile phone users. However, the fine-grained geographic
information is difficult to obtain from mobile phone logs
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due to privacy concerns [18]. To address this problem,
grid-based geographic segmentation approaches have been
proposed [19, 20]. In this paper, we first divide urban areas
into grids, and then characterize the daily traffic patterns of
the grids.

2.2 Urban Events and Impacts

Researchers have exploited different methods to study the
dynamics, causes and impacts of urban events [4, 5, 21, 22].
For example, Liang et al. [23] used the LBSN check-in
data to model the size and duration of crowd gathering in
urban events. However, the social network check-in data
is usually biased [24], and it is difficult to estimate the
event duration accurately. Another method is to detect
urban events from a large number of text streams from
social media. For example, Sakaki et al. [25] detected
typhoon and earthquakes from tweets with locations, and
Li et al. [22] investigated the similarity of users to find
out unusual urban events mentioned in Twitter. Agarwal
et al. [26] applied a graph clustering algorithm for event
detection by finding dense sub-graph structures. Zhang et
al. [4] proposed an approach to automatically discover the
time, venue, and scale of urban events from abnormal human
activities. In general, the above-mentioned works mainly
focus on detecting urban events, but lack in the evaluation
of their impacts on urban structures and crowd dynamics. In
this paper, we correlate urban events with city structures via
abnormal crowd movements, and analyze their impacts in a
comprehensive manner

3 Framework Overview

The objective of this work is to characterize crowd dynamics
in different urban structures in a low-cost and automatic
manner. To this end, our framework consists of two phases,
i.e., the urban structure portrait phase and the crowd dynamic
characterization phase, as shown in Figure 1. Specifically,
we first collect the relevant urban datasets, including taxi
GPS trajectories, geographic boundaries, and social media
contents. In the urban structure portrait phase, we first
divide a city into equal-sized grids, and then map taxi GPS
trajectories into the corresponding grids. Then we extract
the spatial-temporal profiles of crowd movements in grids,
and cluster them to obtain semantic urban regions leveraging
a distance-constrained clustering algorithm (DCCA). In the
crowd dynamic characterization phase, we detect anomaly

Fig. 1 Framework overview.

crowd mobility flows for each urban region, and correlate
these anomalies with real-world urban events discovered in
the social media dataset. Finally, we build a dynamic visu-
alization system to demonstrate the impact of urban events,
and provide support for urban planning and management.

4 Dataset Description

Before elaborating the details of the proposed method, in
this section, we present the datasets employed in this paper,
including the taxi GPS trajectory dataset, geographic dataset,
and the social media dataset collected in the city of Xiamen.

4.1 Taxi GPS Dataset

We collect the taxi GPS trajectories in September, 2016 from
Xiamen transportation authority. The number of taxis in
Xiamen City is 5,486. The GPS records about these taxis are
uploaded to the authority in every 30 seconds. Subsequently,
we obtain a dataset containing about 377 million records,
with an average of 68,666 records per taxi. The raw data
was stored in an Oracle database and the main fields of the
taxi GPS trajectory data include:
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• ID: the unique identity of a taxi.
• LONGITUDE: the longitude of a record in 106 degree.
• LATITUDE: the latitude of a record in 106 degree.
• STATE: the taxi service status, 1 if the taxi is occupied

and 0 if it is vacant.
• TIMESTAMP: the time of a record in millisecond.

4.2 Social Media Dataset

Today, information about urban social and emergency events
can be found in social networks via the posts, images, and
location-based check-ins of their users [6,27,28]. Such social
media information can be used to evaluate and characterize
the time, venue, and impact of social events [4, 5]. In this
work, we collect the posts, images, and check-ins in Xiamen
during September, 2016 from Weibo, one of the largest social
network in China. We store the information in a Mongodb
database for query and maintenance.

5 Urban Structure Portrait

Due to the urban planning and the establishment of functional
districts, different areas in the city show different structural
characteristics with different daily traffic flow patterns. For
example, there are large differences in traffic flow pattern
between school districts and business districts. In order to
demonstrate the urban structures clearly, we divide the whole
city into smaller areas according to the spatial-temporal
characteristics of vehicle trajectory data

In this chapter, our objective is to divide urban structures.
Each of the divided area consists of small areas with similar
structures. First, we preprocess the raw taxi GPS trajectory
data. Secondly, we divide the urban areas into fine-grain
grids. Finally, we cluster the urban grids with a distance-
constrained clustering algorithm (DCCA).

5.1 Data preprocessing

Each record in the database contains its ID, timestamp,
latitude, longitude and state. Since vehicles travel on urban
roads, if the density of the trajectory data is large enough, the
urban road network can be covered. Besides, the trajectories
of taxis are different from those of private cars influenced by
the commuting time, which are more flexible, and because
of the shift system, the taxi track covers all 24 hours a day.
Therefore, the trajectories of taxis have wide coverage of time
and space. Then we extract the off-passenger trajectory from
the dataset where the state of the vehicle jumped from 1 to 0.

Fig. 2 An illustrative visualization of the taxi drop off points in Xiamen
City from the dataset.

The tra jec_drop = (ID, lon, lat, t_drop) represents a drops
off record from a taxi with ID number. And the drops off

location is (lon, lat), lon represents longitude, lat represents
latitude, and t_drop represents the time for alighting. As
shown in Figure 2, the drop off points can almost cover all
roads in the city, which shows that the data are large enough
to sensing the structure of the whole city.

5.2 Urban Grid Generation

In order to divide urban areas into smaller ones, we grid the
whole urban areas [29]. The whole city is divided into M×N
matrix according to its geographical characteristics, which is
the formation of a consistent size and arrangement of small
rectangular. Then, according to the latitude and longitude
range of each rectangle, the drop off information are mapped
into the corresponding rectangles, sorted by the timestamps.
Then we count the number of records in grid i within a certain
duration t as gi,t. Specifically, we calculate the number of
drop off vehicles in the grid i with latitude between lat_min
and lat_max and longitude between lon_min and lon_max as
follows:

gi,t = {count(tra jec_drop)|t_drop ∈ t,

lonmin 6 lon 6 lonmax, latmin 6 lat 6 latmax}
(1)

And the set Gi = {gi,1, gi,2, gi,3, ..., gi,n} describes the drop
off feature of grid i. Then we form a M × N × T tensor. As
show in Figure 3.
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Fig. 3 (a) Grids mapping to city areas. (b) Analytics of the time series for
each grid to form a M × N × T tensor.

5.3 Urban Grid Clustering

After dividing the whole city into grids, we observed that
the traffic pattern of a grid is highly dynamic under different
temporal contexts. As shown in the Figure 4.

It is obviously that weekday-weekend patterns are regular
and there is a negative correlation between the similarity of
traffic flow patterns and the distance of the areas. For exam-
ple, the traffic flow patterns of grids from one place, such as
railway station or convention center, are quite similar, and the
traffic flow patterns from different places, such as one from
railway station and another from convention center, are very
different, which shows the spatial-temporal characteristics
of the grids’ daily flow patterns. We characterize the flow
pattern of each grid using a temporal-context-based profile.
More specifically, given a grid gi and extract its flow vector
measured in hours from its time series Gi. We aggregate and
average the traffic flow from Monday to Friday in each week
to build a typical weekday traffic flow profile, i.e.

fw(gi) = [u1, u2, u3, u120] (2)

Similarly, we build a typical weekend traffic flow profile
by aggregating and averaging the flow in Saturday and
Sunday of each week, i.e.

fn(gi) = [v1, v2, v3, v24] (3)

Finally, we concatenate the weekday and weekend traffic
flow profiles to obtain the temporal-context-based traffic flow
profile, i.e.

f (gi) = [ fw(gi), fn(gi)] (4)

Due to the spatial dependency, the grids close to each other
should be clustered together. Firstly, we construct a weighted
graph G = (V, E), where V = {g1, g2, ..., gN} denotes the set
of N grids and E denotes the set of links between every two
grids, to represent the relationship of grids.

Secondly, we define the adjacency matrix A of graph G,
which is an asymmetric N × N matrix with entries ai, j =

1 when there is a link between grid gi and grid g j, and
ai, j = 0 otherwise. We use the geographic distance of two
grids to determine whether they are adjacent or not. More
specifically, for grid gi and grid g j, we define:

ai, j =

1, i f dist(gi, g j) 6 τ
0, otherwise

(5)

where dist(gi, g j) is the geographic distance between the
two grids, and τ is a neighborhood threshold controlling the
geographic distance of neighboring grids.

Given two adjacent grids, we use their similarity measure-
ment to determine their link weight, i.e.

w(gi, g j) = (S IMDDIS T { f (gi), f (g j)}) × ai, j (6)

We note that w(gi, g j) = 0 when ai, j = 0, which means that
there is no link between gi and g j.

Given a graph G = (V, E), we define a set of clusters R =

{Cl, ...,Ck}, where ∪∀Ck∈R = V , and ∩∀Ck∈R = 0. Then, given
a grid v, we define the connectivity of v to a cluster C as the
sum of link weights between v and the grids in the cluster
C, con(v,C) =

∑
v′∈C wv,v′ . Finally, we define the adjacent

clusters C(v) of v as C(v) = {C|con(v,C) > 0,C ∈ R}.
With the definitions above, our objective is to find an

optimal set of clusters R, so that the connectivity within
a cluster is higher than the connectivity between different
clusters, i.e.

∀v ∈ Ck, con(v,Ck) > max{con(v,Cl),Cl ∈ R} (7)

We bound the distance span of a cluster within the thresh-
old, i.e.

∀v, v′ ∈ Ck, dist(v, v′) 6 τ (8)

Based on [30], we use a Distance Constrained Clustering
Algorithm (DCCA) to cluster area grids. The basic idea of
DCCA is iteratively assigning grids to the adjacent clusters,
where the gain of assigning grid v to cluster C is iteratively
evaluated by a value function as follows:

value(v,C) = con(v,C) × log(
τ

max(dist(v, v′))
) (9)

The DCCA greedily assigns the grids to the adjacent
cluster with highest value until none of the grids are moved
among clusters. As the convergence of such a greedy
approach is difficult to prove, the algorithm is stopped in
the following two cases: (1) the user specified maximum
iteration number max_iter is reached, or (2) none of the grids
are moved among clusters.
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Fig. 4 The flow patterns of the four sample regional grids. Convention and Exhibition Center accounts for two grids, while the Railway Station accounts
for the other two grids.

6 Crowd Dynamics Characterization

The daily state of the city shows a certain regularity. How-
ever, the occurrence of an urban event often breaks this
regularity. In this section, the main objective is to explain
the impacts of the urban events on crowd dynamics by
detecting the anomalous traffic flow in urban structures.
The occurrences of urban events can affect the daily traffic
characteristics and different types of events have different
impacts on crowd dynamics. For example, a concert is held in
one place and the number of people in the vicinity of this area
increases before the concert starts, resulting in increasing
activities in the area. In addition, if there is a natural disaster
in the city, such as a typhoon, it will lead to the stagnation
of urban production, paralysis of traffic and reduction of
people’s mobility, and many areas of the city will be less
active.

Through analyzing the impacts of urban events on the
crowd dynamics, we can help the city managers to improve
the efficiency of the city and reduce the loss caused by
emergencies. The analysis consists of two steps. First, we
use anomaly detection algorithms to detect abnormal traffic
from daily traffic patterns in each region. Second, we verify
every abnormal traffic point with urban events based on the

social media news, and then analyze the impacts of urban
events on the dynamics of urban areas.

6.1 Regional Abnormal Traffic Flow Detection

Through the structure analysis of the urban areas in the
previous section, we can extract the daily historical traffic
flow characteristics of each region. If an influential urban
event occurs, the flow characteristics of the region will
change greatly, as show in Figure 5. By observing the 30-
day total flow chart of a region and decomposing it into daily
flow chart, we can find red anomalous traffic points. We can
detect those irregularities from all basic patterns at once using
the ARIMA Outlier Detection [31] method.

More specifically, we first extract the daily historical traffic
flow characteristics A(r, n) of each area r, n represents the
area r consists of n area grids, i.e.

A(r, n) = {a1, a2, ..., ak} (10)

Where ai(1 6 i 6 k) represents the sum of the flow in the ith
hour of n regional grids. The traffic flow characteristics vector
A(r, n) is divided into testing set and training set. Then we use
ARIMA to train the basic flow pattern model, Model(r, j),
where there is no urban event.

Train = {a1, a2, ..., a j} (11)
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Fig. 5 The flow pattern of the extracted area grid with a 30-day flow characteristic in one area along with a daily flow chart.

Test = {a j+1, a2, ..., ak)} (12)

Model(r, j) = ARIMA(Train) (13)

In this way, we use the model Model(r, j) to predict traffic
a′j+1, a

′
j+2, ..., a

′
j+t for the next time t and detect the abnormal

traffic flow with the anomaly detection algorithm [32], which
requires individual threshold δm to control the irregularity
significance for each basic pattern of each region.

a′m ∈ (a′j+1, a
′
j+2, ..., a

′
j+t)

am ∈ (a j+1, a j+2, ..., a j+t) ∈ Test, |am − a′m| > δm
(14)

If |am − a′m| > δm, it means that the abnormal traffic flow
point appeared in the moment of m. We can find out the
abnormal traffic flow in all areas at any time by this method.

6.2 Urban Event Verification

6.2.1 Identify Points of Interest

POIs(Points of Interest) mainly include the scenic spots,
governmental agencies, school districts, companies and other
geographical entities used in the daily lives of urban resi-
dents. According to the category of POI in the area, we can
determine the location of the urban event and connect the
anomaly traffic points with the urban event. We download
the POI distribution dataset of Xiamen from Baidu, includ-
ing categories of catering, landscape, company, medical,
education, and each category has fields shown in Table 1.
According to the latitude and longitude range of urban areas
,we can count the number of POIs in each area, which brings
convenience to search urban events.

Table 1 The fields specifications of the POI dataset.

Order Field Name Instruction Field Type

1 uid identifier int
2 name the name of POI varchar(128)
3 longitude the longitude of POI float
4 latitude the latitude of POI float
5 telephone the telephone of POI varchar(50)
6 address the address of POI varchar(100)

6.2.2 Search and Verify Urban Events

We search the social media for urban events that coincides
with the time and location of anomalous flow peaks, verify
each abnormal flow point with urban events in reality and
correlate the urban events to the results. Then we analyze the
impacts of such urban events on crowd dynamics, including
the scopes of the affected areas and durations, and match the
anomaly traffic points with urban events to build the urban
event dataset.

By utilizing the visual display technology, we show the
urban structures and the impact areas of urban events, which
can help city managers and the general public have a better
understanding of the urban structures and dynamics, prepare
for the similar events in advance to keep some accidents from
happening and take steps in time to reduce the loss.

7 Evaluation

In this section, we evaluate our method using real-world
taxi CPS trajectory data and social media data from Xiamen
island. We introduce the experiment settings first. Then
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we present the evaluation results. Finally, we display our
analysis results on the visualization platform.

7.1 Experiment Settings

7.1.1 Evaluation Plan

Firstly, we map the grids to the coverage areas of Siming and
Huli districts in Xiamen and aggregate the traffic data of the
corresponding grids. We select the data between 09/01/2016
and 09/30/2016 to generate traffic profile of the grids and
cluster the grids into urban structure regions with the DCCA
algorithm. Then we extract the daily traffic characteristics of
each clustered region, and use anomaly detection algorithm
to detect abnormal traffic points. Finally, we verify each
abnormal traffic point with urban events and display the
distribution of the impact of each urban event on the dynamic
of urban regions.

7.1.2 Evaluation Metrics

We evaluate the anomaly detection algorithm that we used
by computing the accuracy of the anomaly traffic detection
results and the precision and recall of the anomaly traffic
flow detection results. If a detected traffic abnormal point
has a temporal overlapping with the real world urban event,
we mark the detection as a hit. In this paper, the precision
and recall are calculated as follows:

precision =
A
B

(15)

recall =
A
C

(16)

where A denotes the detected abnormal points that corre-
sponding to urban events, B denotes all detected abnormal
points and C denotes the abnormal points caused by all urban
events.

In addition, we calculate the F1-Score as

F1-Score =
2 × precision × recall

precision + recall
(17)

to assess the performance of the anomaly detection algorithm
that we used.

7.1.3 Baseline Method

We compare our abnormal traffic detection algorithm with
several baseline methods as follows:

1. ULQT (Upper and Lower Quartile Threshold): This
method establishes a threshold range with upper and
lower quartiles, and regards the traffic values above the

Fig. 6 Results of urban structure portrait.

threshold range as outliers. The model predicts the flow
value in the next time range, compares it with the real
value, and then detect the abnormal value compared
with the threshold.

2. S-H-ESD (Seasonal-Hybrid-ESD): This anomaly de-
tection algorithm is from Twitter, which employs sta-
tistical learning to detect anomalies in both application,
and system metrics. It employs seasonal decomposition
to filter the trend and seasonal components of the time
series, and use median and median absolute deviation to
detect anomalies.

3. iForests-Based (Isolation Forests-Based) Method:
This method splits the points in the data into outliers or
inliers, depending on how long it takes to separate the
points [33]. A non-outlier will have many points
around, so it will be really difficult to isolate it, while if
a point is an outlier, it will be alone and can be found
easily. The advantage of this method is that it can work
with a huge dataset and several dimensions.

7.2 Evaluation Results

7.2.1 Urban Structure Portrait Results

The geographical area of Xiamen is partitioned into 77 × 68
grids with the grid size about 200×200 square meters. In each
grid, the normalized traffic volume is recorded on an hourly
basis. It is meaningless to analyze all grids and it will waste
computing resources because the number of grids is large and
the small traffic volume in some grids cannot affect the traffic
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Table 2 The Results of Anomalous Traffic Flow Detection

Methods Precision Recall F1-Score

ULQT 31.6% 90.7% 46.9%
S-H-ESD 80.0% 62.5% 70.2%
iForests 50.0% 58.1% 53.7%
ARIMA (Proposed) 71.8% 92.0% 80.7%

greatly. Therefore, we check the traffic volume of all grids
and select 1,655 grids.

We chose the maximum number of iterations max_iter =

20 and distance threshold τ = 1km, and then 1665 grids
were clustered into 147 regions using the DCCA clustering
algorithm. The clustering regions are shown in the Figure 6,
where adjacent grids of the same color represent a region.

We find that the flow characteristic curve of a single
region after clustering is relatively stable and has spatial-
temporal characteristics. There are differences in the traffic
characteristics at different locations, and the trends of traffic
volume at different times in the same location are regular. As
show in Figure 7.

7.2.2 Anomalous Traffic Flow Detection Results

The performance comparison of two abnormal traffic flow
detection algorithms is shown in the TABLE 2. ARIMA
anomaly detection algorithm achieves the best performance,
except that its precision is lower than than of the S-H-ESD
method. In particular, the F1-Score of ARIMA anomaly
detection algorithm achieves 80.7%, which is the highest. So
in this paper, we detect abnormal traffic flow through ARIMA
anomaly detection algorithm mainly.

Firstly, we use ARIMA to train the model in terms of
traffic characteristics from 09/01/2016 to 09/07/2016 in each
clustered region, and then predict the traffic flow next 6 hours
using the training model. Secondly, the real traffic flow of six
hours is added to the original training data set to establish
a new model. Finally, we set the threshold and detect
abnormal points by comparing the original and predicted
traffic flow data, and verify the outliers with urban events
collected from social media. As shown in the Figure 8, this is
the result of anomaly detection on the traffic characteristics
of Xiamen Convention Center. We can see that there are
abnormal points from 09/08/2016 to 09/11/2016 and from
09/23/2016 to 09/25/2016, during which time large-scale
commercial exhibitions were held in Xiamen Convention
Center, as shown in Table 3.

7.3 Visualization Platform of Crowd Dynamic

The occurrences of urban events often leads to the changes
of crowd dynamics, resulting in the abnormal traffic flow in
some regions. Firstly, we find the corresponding urban events
to the abnormal traffic flow and then count the impacted
regions of each urban event by analyzing the abnormal traffic
flow points in each region. In order to demonstrate the
impacts of urban events on city dynamics more clearly,
we have built a visualization platform [34] to display the
impacted areas of each urban event and show the traffic flow
changes in each area.

As shown in Figure 9(a), this platform is mainly divided
into two parts. In the left frame, you can select the urban
event, the event date, the number of the regions affected by
the event and the flow curve of each region will be displayed
below. The map on the right shows the influenced regions of
the urban event. As show in Figure 9(b), we can arbitrarily
select an event from the event list and a detailed description
of the event will appear. At the same time, the affected region
of this event will be displayed on the map.

As shown in Figure 9(c) and Figure 9(d), we can select
a region from the list of regions influenced by the event.
Then the changes of the traffic flow within 22 days and the
distribution of abnormal traffic points in this region will be
displayed.

8 Discussions

In this section, we discuss several issues and concerns of this
work.

• Area partitioning scheme. The traffic flow on the road
network is closely related to the urban areas around
the road, and the traffic flow patterns in different re-
gions show different characteristics. For example, if
a concert is to be held in a Stadium, the traffic flow
on the surrounding roads of the stadium will increase
significantly before or after the competition compared
to usual days. Therefore, instead of using road segments
as the basic elements to partition the city region, we
map road traffic to the corresponding urban areas using
grid-based coordination systems. In this way, we aim
to reveal the urban structures and dynamics impacted by
the intrinsic city functions and points of interests, etc.

• Grid size. The size of girds will influence the results
of analysis. On the one hand, if the gird size is
too small, the efficiency of the proposed method will
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Fig. 7 Illustrative traffic patterns of the Railway Station and the Convention Center formed by the regional grid clustering.

Table 3 Detailed information about the urban events.

Time Detailed Information
09/08/2016 - 09/11/2016 1. The twelfth China International Investment and Trade Fair

2. Xiamen Overseas Property Investment and Immigration Exhibition
09/23/2016 - 09/25/2016 1. China (Xiamen) International Leisure Tourism Expo

2. New Silk Road (Xiamen) International Commodities Fair

Fig. 8 Anomaly detection in Xiamen Convention Center.

decrease. On the other hand, if the grid size is too
large, many valuable information will be missed and the
results of the analysis will be meaningless. In fact, this
problem is coined as the modifiable areal unit problem
(MAUP) [35]. We should take the geographical and

cultural environments of the cities into consideration
while choosing the grid size in different cities. To this
end, we have conducted a series of empirical studies to
find the proper grid size. In Xiamen City, the grid size
about 200 × 200 square meters is suitable in this work.

9 Conclusions

In this paper, we propose a data-driven framework to sense
urban structures and dynamics from large-scale vehicle mo-
bility data in a systematic manner. Based on large-scale vehi-
cle sensing data, we extract the regular mobility patterns and
exploit their similarities to discover urban area functionali-
ties. The irregular crowd movements are also investigated to
analyze urban social and emergency events. Specifically, we
propose a distance-constrained clustering algorithm (DCCA)
to cluster the grids with similar mobility features into struc-
tured urban areas, and leverage an ARIMA-based anomaly
detection algorithm (ADAM) to correlate crowd movement
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anomalies to the urban social and emergency events. Finally,
we build a visualization system to demonstrate the urban
structures and crowd dynamics. We evaluate our framework
using real-world datasets collected from Xiamen City, China.
Results show that our approach can sense urban structures
and crowd dynamics for urban planning and city management
comprehensively and effectively.

In the future, we plan to build a real-time analytics system
for the urban crowd dynamics, and involve more intelligent
algorithms (e.g., deep learning techniques) to correlate events
with anomalies.
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