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Abstract—Bike sharing systems are widely operated in many
cities as a green transportation means to solve the last mile prob-
lem and to reduce traffic congestion. One of the key challenges
in operating high quality bike sharing systems is rebalancing
bike stations from being full or empty. To this end, operators
usually need to foresee the bike demands and schedule trucks to
reposition bikes among stations. However, an accurate prediction
of city-wide bike demands is not trivial due to the spatial
correlation and temporal dependency of user mobility dynamics.
Moreover, finding an optimal station rebalancing strategy from
potentially enormous candidates is challenging given resource
optimization objectives. In this work, we propose a two-phase
framework to accurately predict city-wide bike demands and
effectively rebalance bikes stations leveraging state-of-the-art
deep learning techniques. First, we build a spatiotemporal graph
neural network (ST-GNN) to model and predict city-wide bike
demands, simultaneously capturing the spatial correlation by
Graph Convolutional Networks (GCN) and the temporal depen-
dency by Gated Recurrent Units (GRU). Then, we formulate
the truck-based station rebalancing problem as an optimization
problem with transportation cost objectives, and effectively solve
the problem with Integer Linear Programming (ILP) algorithm.
Experiments on real-world datasets from New York City validate
the performance of the proposed framework, reducing 13% of
prediction error and 5% of transportation cost compared with
the baseline methods.

Index Terms—Bike sharing systems; graph neural networks;
demand prediction; station rebalancing; data analytics

I. INTRODUCTION

Bike sharing systems are widely operated in major cities
around the world, with over 1,000 active systems as of
December 2016 [1]. The users of these systems can easily
pick and return public bikes at self-service stations scattered
around a city to make short trips [2]. However, as the demand
for bike increases, the supplies of bikes at different stations
quickly become unbalanced, which greatly hurts the users’
bike experience [2], [3]. On one hand, if the user demand is
greater than the bike supply in a station, it becomes difficult
for the users to rent bikes from the station. On the other hand,
if the bike supply is greater than the user demand, it becomes
difficult for users to return bikes due to insufficient number of
docks. Therefore, effective station rebalancing approaches to
prevent stations from over-demand are in great need for bike
sharing system operators.

Currently, there are two main approaches for rebalancing
bikes in a system, i.e., user-based rebalancing and truck-
based rebalancing [4]. The user-based rebalancing approaches
usually incentivize the users in the bike repositioning process,
encouraging them to pick or return bikes in specific stations
in exchange for monetary incentives [5]. However, such an
approach may require users to change their intended journey,
and consequently the effectiveness of station rebalancing is
affected by the willingness of user participation [5]. Moreover,
how much incentive reward to offer to different users is a chal-
lenging problem given specific budget constraints. Therefore,
in this work, we concentrate on the truck-based rebalancing
approaches widely adopted in many bike sharing systems [6].

In general, there are two steps in truck-based rebalancing
approaches, i.e., demand prediction and station rebalancing.
First, it is crucial to accurately predict the demand at each
station to foresee the bike and dock availability in the future.
Second, it is important to design effective strategies for truck
operators to reposition bikes among stations. However, these
two steps are challenging due to the following issues.

• How to accurately model the spatiotemporal dy-
namics of bike demands? Since bike sharing systems
are continuously operated city-wide, the bike demands
of users demonstrate strong intrinsic spatial correlation
and temporal dependency [7]. Therefore, bike demand
prediction models need to take both spatial and tempo-
ral features into consideration. However, due to uneven
bike station distribution and dynamic user movement,
it is challenging to capture the spatial correlation of
bike demands. Moreover, the temporal variations of bike
demands are fluctuating with latent trends and periods,
making it difficult to model the underlying temporal
patterns.

• How to effectively find the optimal strategy for station
rebalancing? Due to the tremendous bike repositioning
schemes among stations, station rebalancing problem is
usually considered NP-hard [8]. Therefore, the time to
find an optimal rebalancing solution grows exponentially
and quickly becomes intractable for city-wide bike shar-
ing systems. Moreover, since the number of available



trucks and the amount of rebalancing budgets are usually
limited, these resource-constraints should also be imposed
in the formulation of the station rebalancing problem.

Fortunately, with the rapid evolution of deep learning tech-
niques, the emergence of graph neural networks has presented
new possibilities to model complicated spatial correlation and
dynamic temporal dependency, providing us with new oppor-
tunities to address the above-mentioned issues. In this work,
we propose to model city-wide, time-varying bike demands
as spatiotemporal graph neural networks, and learn its latent
graph structures with large-scale historical data. Consequently,
we accurately predict city-wide bike demands. Based upon
this, we formulate station rebalancing as an optimization prob-
lem, and effectively solve it with integer linear programming
algorithms. In summary, our contributions include:

• We propose a two-phase framework to design an opti-
mal bike balancing strategy with accurate bike demand
prediction. In the first phase, we build a spatiotemporal
graph neural network (ST-GNN) to model and predict
the city-wide bike demands, which captures the spatial
correlation by Graph Convolutional Networks (GCN)
and the temporal dependency by Gated Recurrent Units
(GRU). In the second phase, we formulate the truck-based
station rebalancing problem as an optimization problem
with transportation cost objectives, and effectively solve
the problem with Integer Linear Programming (ILP)
algorithm to find the exact optimal solution.

• We evaluate our proposed framework using real-world
bike sharing system data collected from New York City’s
Citi Bike system in one year. Results show that the
proposed framework can not only accurately predict bike
demands with reducing 13% error, but also find an
optimal station rebalancing strategy that reduce 5% of
transportation cost, which consistently outperforms other
baseline methods.

The rest of this paper is organized as follows. We first
present preliminaries and framework overview in Section II,
and then describe two phases of our proposed framework
in Section III and IV, respectively. We report the evaluation
results in Section V, and present a brief survey of related works
in Section VI. Finally, we conclude our work and discuss
future directions in Section VII.

II. PRELIMINARIES AND FRAMEWORK OVERVIEW

A. Preliminaries

Definition 1: Station Status: the status of bike station i at
time t is defined as a tuple < B(t)

i ,D(t)
i >, where B(t)

i and D(t)
i

are the number of available bikes and docks in station i at
time t, respectively.

Definition 2: Time Span: we divide the duration of obser-
vation data into equal time spans ∆t, each time span lasts for
a period of time, e.g., one hour.

Definition 3: Bike Demand: the bike demand of station i
during time span ∆t is defined as the number of bikes rented

Fig. 1. Framework overview.

from the station minus the number of bikes returned to the
station during ∆t.

B. Framework Overview

As shown in Fig.1, we propose a two-phase framework
to accurately predict city-wide bike demands and effectively
rebalance bike stations leveraging state-of-the-art deep learn-
ing techniques. In the demand prediction phase, we first
exploit a spatiotemporal graph to formulate the demand pre-
diction problem in the bike sharing system. We then build
a spatiotemporal graph neural network (ST-GNN) to predict
city-wide bike demands, simultaneously capturing the spatial
correlation by Graph Convolutional Networks (GCN) and the
temporal dependency by Gated Recurrent Units (GRU). In the
station rebalancing phase, we first formulate the truck-based
station rebalancing problem as an optimization problem with
transportation cost objectives, and then construct rebalancing
pairs. Finally, we effectively solve the problem with Integer
Linear Programming (ILP) algorithm.

III. ST-GNN-BASED BIKE DEMAND PREDICTION

In the bike demand prediction phase, our objective is to
accurately predict the city-wide bike demand patterns of a bike
sharing system for a future period of time, which is not trivial
due to the intrinsic spatial and temporal dynamics of bike
demands. For example, Fig.2 shows the demand patterns of
two stations in New York City during two weeks. The stations
in the business district usually observe riding peaks during rush
hours, while the station in the residential area are intensively
used during after work hours. It is difficult to model the city-
wide dynamics of bike demand patterns using traditional time
series analysis techniques (e.g., ARIMA models [9] and feed-
forward neural networks [10]). To address these challenges, we
leverage the spatiotemporal graph neural network (ST-GNN)
to model the spatial correlation and temporal dependency of
bike sharing systems for accurate prediction. We elaborate the
details as follows.



Fig. 2. An illustrative example of bike demand variations in two bike stations from New York City on 02/01/2015, observed
hourly based on the Citi Bike system.

A. Graph-based Demand Prediction Problem Formulation

The objective of city-wide bike demand prediction is to
predict the bike demands of each station in a future period of
time, given previously demand observations. To this end, we
build a spatiotemporal graph to model the demand variations
in the bike sharing system. Specifically, we represent the bike
sharing system as a weighted undirected spatiotemporal graph
G = (V,E), where V denotes the graph nodes that represent
the bike stations in the system, and E denotes the set of edges
between the station pairs. Based on this graph structure, we
model the spatiotemporal dynamics of bike demands using
node values and edge weights as follows.

Node Values (X): we define the value of node v∈V as X (t)
v ,

which is calculated as the bike demand of station v during
[t, t +∆t]. Consequently, we denote the node values of graph
G as a matrix X ∈ RNt×Ns , where Nt is the number of time
spans, and Ns = |V | the number of stations in the system.

Edge Weights (W): we define the weight of edge ei, j =
{vi,v j} ∈ E as W (vi,v j), which is calculated based on the
correlation between station vi and station v j. In this work,
we model the station correlation based on the geographical
distance between them. We note that the correlation mod-
eling can directly adapt to other application scenarios, e.g.,
by calculating the similarity of point-of-interest distributions
among stations. Based on the above definitions, we formulate
the demand prediction problem as follows.

Demand Prediction Problem: Let X (t) represent the node
values of the graph observed at time t, the objective of the
demand prediction problem is to learn a function f (·) that
maps Np historical graph node values to N f futural graph node
values given the spatiotemporal graph structure, i.e.,

[X (t+1), ...,X (t+N f );W ] = f ([X (t−Np+1), ...,X (t);W ]) (1)

Finding the mapping function for Problem 1 is not trivial,
not only because the temporal dependency of node values
X is complicated, but also because the node values exhibit

strong spatial correlation constrained by W . Therefore, we
construct a spatiotemporal graph neural network (ST-GNN)
model to learn the mapping function from historical data for
accurate node value prediction. Specifically, we exploit a graph
convolutional network unit to model the spatial correlation,
and a gated recurrent units to model the temporal dependency.
The overview of the proposed ST-GNN architecture is shown
in Fig. 3. We elaborate the details as follows.

B. GCN-based Spatial Correlation Modeling

In spatial correlation modeling, current works usually em-
ploy grid to divide the urban area, converting urban data
to Euclidean domains, and then use Convolutional Neural
Networks (CNN) to model spatial correlation [11]. However,
in our problem, the spatial distribution of bike stations are
irregular and in non-Euclidean domains. Hence, we introduce
graph structure to model the spatial distribution of bike stations
and exploit Graph Convolutional Networks (GCN) to model
spatial correlation.

Specially, we first model the dynamics of the bike demand
as a diffusion process [12], and convert it into the Fourier
domain. Then, we introduce the graph convolution operation
[13] to model the spatial correlation of related bike stations to
capture the underlying spatial closeness and regional features.
Therefore, we can explicitly capture the stochastic spatial
correlation of bike demand dynamics.

Spectral Graph Convolution. Graph convolution is very
effective on non-Euclidean domains [14]. However, it is
challenging to construct a convolution operator in the vertex
domain. To address this challenge, Bruna et al. [14] proposed
spectral networks and locally connected networks on graphs
based on graph spectrum theory. Graph spectrum is the set
of graph eigenvalues of the adjacency matrix of the graph.
With the spectral graph convolution [13], we can easily define
the convolution operator on graph in the Fourier domain. The
spectral graph convolution defined as



Fig. 3. Model architecture for the spatiotemporal graph neural network (ST-GNN).

X ∗G y =U((UT x)� (UT y)) (2)

where U is the eigenvectors of graph Laplacian matrix,
and � is the element-wise Hadamard product. In order to
train graph neural networks model efficiently, we use GCN
architecture designed by Kipf et al. [15].

C. GRU-based Temporal Dependency Modeling

We leverage the recurrent neural networks (RNNs) to model
the temporal dependency. In particular, we use Gated Re-
current Units (GRU) [16], which is a powerful variant of
RNNs overcoming gradient vanishing and gradient exploding
problem effectively. Encoder-decoder structure is widely used
in spatiotemporal sequence predicting tasks because it has
been verified very effective. Therefore, we introduce encoder-
decoder structure to build sequence to sequence architecture
along with GRU units. Sequence to sequence is effective in
multiple step ahead prediction.

Gated Recurrent Unit. Recurrent Neural Networks
(RNNs) can model the dependency of time series effectively
[7]. However, the traditional RNN models have limitations
for long-term prediction due to gradient vanishing and gra-
dient exploding problems. Although Long Short-term Mem-
ory (LSTM) [17] can address these challenges, it has the
defect of more training time consumption special for complex
structures. Hence, we introduce Gated Recurrent Unit (GRU),
the variant of RNNs, to model the temporal dependency.
Compared with LSTM, GRU model has a relatively simple
structure with fewer parameters and faster training speed.

D. The Spatiotemporal Graph Neural Network Architecture

With both spatial correlation and temporal dependency
modeling, we build a spatiotemporal graph neural network
(ST-GNN) to accurately predict the bike demand. Fig.3 shows
the model architecture of ST-GNN. The objective function
of ST-GNN is to maximize the likelihood of predicting the

time series in a future period of time. Specifically, the ST-
GNN model consists of two parts, i.e. GCN-based spatial
correlation modeling and GRU-based temporal dependency
modeling. Moreover, the whole network is trained by using
backpropagation through time (BPTT). To avoid gradient
vanishing and gradient exploding problem, we employ Adam
optimization algorithm [18] to address these challenges.

In particular, we employ the sequence to sequence [19]
architecture to enable multiple step ahead prediction. Both the
encoder and the decoder are recurrent neural networks with
combination of GCN and GRU. At training step, we feed the
historical time series into the encoder and use its final states
to initialize the decoder. The decoder generates predictions
given previous ground truth observations. During testing step,
encoder-decoder model replaces the ground truth observa-
tions with predictions generated. The conflict between the
input distributions of training and testing can cause degraded
performance. To mitigate this issue, we introduce scheduled
sampling [20] into the model to improve the performance.

IV. ILP-BASED STATION REBALANCING

In this phase, given the accurate prediction of city-wide bike
demands, our objective is to find an optimal station rebalancing
strategy to prevent stations from over-demand. To this end, we
first identify the station rebalancing problem, and then propose
an integer linear programming-based solution.

More specifically, when a station rebalancing task is to be
conducted, we first accurately predict the bike demands for
the next time span (e.g., one hour). We then filter the stations
that need to be rebalanced, i.e., the bike numbers in these
stations are out of a reasonable balanced range (the details are
elaborated below). Finally, we define a rebalancing problem
for these stations and the available scheduling resources.

One of the key challenge in solving the station rebalancing
problem is that such a problem is usually NP-hard [8], due
to the tremendous station-to-station combinations for mov-
ing bikes. In addition, this problem is resource-constrained
due to limited rebalancing resources (e.g., budgets and truck



numbers) [21]. In this work, we exploit the Integer Linear
Programming (ILP) approach to effectively find the exact
solution to this problem. We elaborate the details as follows.

A. System Modeling

We model the above-mentioned problem as an optimization
problem, where the objective is to minimize the cost of
transporting bikes from the over-demand stations to over-
demand stations. We define the reasonable number of the
bikes in a station is in range [lb,ub], therefore for each over-
supply station i, the number of bikes that can be removed is in
range [si−ub,si− lb], and for each over-demand station j, the
number of bikes that can receive is in range [lb−d j,ub−d j].
We then construct a set of rebalancing pairs, as detailed
in the next subsection. For each rebalancing pair (i, j), if
[si− ub,si− lb]

⋂
[lb− d j,ub− d j] 6= /0, which means that we

can not rebalance these two stations through inner rebalancing,
so we remove the corresponding column in matrix A. After
removing all invalid rebalancing pairs, we get the matrix
A′ = [p1, p2, ..., pl ](n+m,l), where l is the number of valid pairs,
and pi(i = 1, ..., l) represents the valid rebalancing pair vector.
Then we construct the cost vector C = [c1,c2, ...,cl ]

′, where
ci(i = 1, ..., l) is the transportation cost of rebalancing pair pi.

B. Rebalancing Matrix Construction

Let S = {s1,s2, . . . ,sn} and D = {d1,d2, . . . ,dm} be the n
over-supply stations and the m over-demand stations of bike
sharing systems, respectively, where si(s= 1, ...,n) is the initial
number of bikes in over-supply station i and d j( j = 1, ...,m)
is the initial number of bikes in over-demand station j. We
define each pair (i, j) consists over-supply station i and over-
demand station j a rebalancing pair, and denote it as a 0-1
vector v= [vs1 ,vs2 , ...,vsn ,vd1 , ...,vdm ]

′
n+m,1, where vsi = 1, vsk =

0(k = 1, ...,n,k 6= i), vd j = 1, vdk = 0(k = 1, ...,m,k 6= j), which
means that the bikes are removed from station i to station j.
Thus we get a rebalancing matrix consists of all rebalancing
pairs, i.e.,

A = 1 2 ... n ... n×m



1 1 1 ... 1 ... 0
2 0 0 ... 0 ... 0
... ... ... ... ... ... ...
n 0 0 ... 0 ... 1

n+1 1 0 ... 0 ... 0
n+2 0 1 ... 0 ... 0
... ... ... ... ... ... ...

n+m 0 0 ... 1 ... 1

C. Problem Formulation and ILP Solution

With the above definitions, we present the formulation of
the bike transportation problem with the objective of mini-
mizing the transportation cost under the constraint that after

TABLE I
DATASET DESCRIPTION

Statistics New York City

Stations 330
Bike trips 10,669,470
Station status hourly
Time span 2015/01/01-2015/12/31

rebalancing, the number of the balanced stations transformed
from unbalanced stations should be maximized.

minimize CT x (3)
subject to

l

∑
j=1

ai jx j ≤ 0(i = 1, ...,n+m) (4)

x j( j = 1, ...,n+m)≥ 0 (5)
n+m

∑
i=1

l

∑
j=1

ai jx j = 2min(n,m) (6)

In the literature, various techniques have been proposed to
solve this problem, such as integer linear programming and
heuristic search [22]. The basic ideas include narrowing the
solution space, finding integer-feasible solutions, and discard-
ing space without better integer-feasible solutions [23]. In this
work, we exploit the integer linear programming approach to
effectively find the exact solution to this problem. In particular,
we employ the Integer Linear Programming Solver from the
MATLAB Optimization Toolbox1 to find the optimal solution.

V. EVALUATION

A. Dataset Description

We evaluate our proposed framework on real-world datasets
from New York City’s Citi Bike system. We collect bike trip
data for one year (2015/01/01-2015/12/31). As presented in
TABLE I, all of the data are in forms of bike trip record
including trip duration, start time, start station, stop time, stop
station and so on.

In order to evaluate our predicted result, we split the datasets
as training data, validation data and test data by choosing the
last 73 days as test data, the first 256 days as training data
and the rest of days as validation data. Bike demand period is
empirically set as one hour.

B. Evaluation on Demand Prediction

Evaluation Metrics: We use three commonly used metrics
in demand prediction, including (1) Root Mean Squared Error
(RMSE), (2) Mean Absolute Error (MAE), (3) Mean Absolute
Percentage Error (MAPE). They are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2 (7)

1https://www.mathworks.com/help/optim/index.html



(a) RMSE (b) MAE (c) MAPE

Fig. 4. Performance comparison of the proposed method and the baseline methods.

MAE =
1
n

n

∑
i=1
|yi− ŷi| (8)

MAPE =
100%

n

n

∑
i=1

|yi− ŷi|
yi

(9)

Baselines: We compare our method with two sets of base-
lines, i.e., machine learning algorithms and deep learning algo-
rithms. We choose ARIMA, SVR, FNN and LSTM algorithms
as baseline methods.
• ARIMA: Auto-Regressive Integrated Moving Average

(ARIMA) [9] is widely used in time series analysis. This
baseline method models the bike demand in a station as
time series, and it does not directly consider changes in
other related random variables.

• SVR: Support Vector Regression (SVR) [24] is the re-
gression method of Support Vector Machine. SVR uses
the same principles as the SVM to minimize error, indi-
vidualizing the hyperplane which maximizes the margin,
keeping in mind that part of the error is tolerated.

• FNN: Feedforward Neural Networks (FNN) [10] is the
basis architecture of deep learning method. We design
the neural networks with two hidden layers and Adam
optimization algorithm.

• LSTM: Long Short-term Memory (LSTM) [17] has feed-
back connections, i.e. memory cells and forget gates,
to overcome gradient vanishing and gradient exploding
problem. This baseline employs recurrent neural networks
with LSTM hidden units to predict the bike demand.

Results: Fig.4 shows that spatiotemporal graph neural net-
work (ST-GNN) consistently achieves the best performance
among all the baselines. As shown in TABLE II, compared
with other baselines, ST-GNN shows at least 13%, 14% and
7% improvements on RMSE, MAE and MAPE relative error
reduction respectively. In conclusion, ST-GNN can model
spatial correlation and temporal dependency effectively.

C. Evaluation on Station Rebalancing

Evaluation Metrics: We evaluate station rebalancing per-
formance with transportation distance, the conversion ratio and
the average running time. Conversion ratio is the ratio of X
stations transformed from unbalanced to balanced status after
rebalancing and Y unbalanced stations before rebalancing.
Average running time is the time consumption after repeating

TABLE II
PREDICTION EVALUATION RESULTS

RMSE MAE MAPE

ARIMA 4.68 3.12 8.8%
SVR 4.67 3.14 8.9%
FNN 4.27 2.99 8.3%
LSTM 4.19 2.88 8.2%
ST-GNN 3.86 2.58 7.9%

TABLE III
REBALANCING EVALUATION RESULTS

GA ILP

Transportation Distance(m) 4931.5 4684.1
Conversion Ratio(%) 33.5 40.0
Average Running Time(s) 0.019 0.006

100 times. Transportation distance and conversion ratio are
defined as follows:

Transportation Distance =
m

∑
j=1

n

∑
j=1

c jx j (10)

Conversion Ratio =
X
Y
×100% (11)

Baselines: The effectiveness of Integer Linear Programming
algorithm is compared to heuristic algorithm as baseline
method, i.e. genetic algorithm (GA) [25]. GA is a genetic algo-
rithm supposed to be efficient for vehicle routing optimization
problems [26].

Results: For the station rebalancing results, the ILP consis-
tently achieves the best performance among all the baselines.
As shown in TABLE III, compared with baseline method, ILP
model reduces 5% of transportation distance cost, and is much
more effective than GA by providing optimal rebalancing
strategy with much smaller traveling distances.

D. Case Study

Finally, we conduct case study analysis to further understand
the benefit and limits of our framework in morning rush hour
in New York City. Fig.5 shows the comparison of bike stations
status before rebalancing and after rebalancing, respectively.
We can see that before 9:00 on December 15, 2015, the system
is not balanced due to it is the busy part of the day when people
are commuting to work. Based on accurate bike demand



Fig. 5. Case study in morning rush hour in New York City on December 15, 2015. Stations status are represented by different color: green
color represents balanced status, red color represents full status and yellow color represents empty status. Left figure shows the system is not
balanced before rebalancing at 9:00. After conducting rebalancing based on our method, right figure shows the system becomes balanced.

prediction and station rebalancing, our framework successfully
generate a rebalancing scheme that greatly reduces the number
of unbalanced stations, validating the effectiveness of the
proposed approach.

VI. RELATED WORK

We describe the related work from two perspectives, i.e.,
spatiotemporal sequence prediction and station rebalancing
approaches.

A. Spatiotemporal Sequence Prediction

Spatiotemporal sequence prediction is a fundamental prob-
lem for data-driven urban planning and management. Nowa-
days, machine learning based methods for Spatiotemporal
sequence prediction, including both classical machine learning
methods and advanced deep learning methods, have special
designed in their model architectures for capturing these
spatiotemporal correlation [27]. For classical methods, there
are three kinds of methods, i.e. feature-based, state space
models and gaussian process, such as Spatiotemporal indicator
[28], STARIMA [29] and GP [30]. For deep learning methods,
there are two categories of methods, i.e. Deep Temporal Gen-
erative Models (DTGMs) and Feedforward Neural Networks
and Recurrent Neural Networks (FNN & RNN). There are
tremendous amount of works on FNN & RNN topic. For
example, Srivastava et al. [31] proposed to use multi-layer
FC-LSTM networks to predict spatiotemporal sequence, but
ignored the spatial information. Shi et al. [32] proposed the
Convolutional LSTM (ConvLSTM) to capture spatial corre-
lation, first modeling the spatial and temporal dependency
successfully. Shi et al. [33] proposed the Trajectory GRU (Tra-
jGRU) to model location-variant motions, such as translation
and rotation. Zhang et al. [11] employed grid to divide city
and proposed Deep Spatio-Temporal Residual Networks (ST-
ResNet) to collectively predict the citywide crowd flows.

Recently, graph-based deep learning methods on non-
Euclidean domains have sprung up. Unlike traditional methods
modeling the spatial feature as regular and Euclidean do-
mains, Graph Convolutional Networks (GCN) employs graph

structure to model the spatial information. Moreover, it is
effective to combine GCN with RNN to model both spatial
and temporal dependency. Li et al. [12] proposed Diffusion
Convolutional Recurrent Neural Network (DCRNN) for long-
term traffic prediction. Yu et al. [34] proposed Spatio-Temporal
Graph Convolutional Networks (STGCN) for traffic prediction,
introducing graph convolution and gated temporal convolution
through ST-Conv block.

B. Station Rebalancing Approaches

With the rapid evolution of sharing economy, the emergence
of bike sharing systems has presented new opportunities for
researchers to address operational challenges by leveraging
big data [2]. There are two main rebalancing approaches
that are truck-based approach and user-based approach [4].
Truck-based approach can be classified into two categories,
including static station rebalancing and dynamic rebalancing.
Static station rebalancing means that the operators reposition
bikes at the bike stations when they are not operating or in
the midnight. Liu et al. [26] employed optimization models
to optimize the total transportation cost, i.e. distant. Dynamic
station rebalancing is an online approach to compute dynamic
bike repositioning and real-time routing plan. Lowalekar et
al. [35] proposed a multi-stage stochastic formulation mod-
eling the future demand to find the best rebalancing strategy
for bike sharing systems. Nowadays, user-based approach is
widely used in dockless bike sharing systems by incentivizing
the customers to reposition bikes along designated routes
at specific bike stations with a reward. Singla et al. [5]
introduced crowdsourcing mechanism to station rebalancing
by incentivizing the customers with a reward.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of accurate
bike demand prediction in bike sharing systems for effective
station rebalancing. We proposed a data-driven framework to
address the challenges by leveraging state-of-the-art graph
neural network and optimization technologies. Specifically,
in the first phase, we built a spatiotemporal graph neural



network (ST-GNN) model to predict the city-wide bike de-
mands, simultaneously capturing the spatial correlation and
the temporal dependency in a unified network architecture. In
the second phase, we formulated the truck-based station rebal-
ancing problem as an optimization problem with transportation
cost objectives, and effectively solved the problem with Integer
Linear Programming (ILP) algorithm to find the exact optimal
solution. Experiments on real-world datasets from New York
City’s Citi Bike system validated the effectiveness of our
framework, which outperformed other baseline methods.

In the future, there are still several issues to be investigated.
First, for long-term demand predictions (e.g., one day ahead),
we plan to incorporate the attention mechanism in the ST-GNN
model to enable accurate and consistent multi-step prediction.
Second, we plan to consider external contextual factors, such
as weather and social events, in modeling and predicting bike
demands. Third, we plan to explore more effective linear
programming techniques, e.g., dimension reduction, to boost
the performance when solving the bike rebalancing problem.
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